Equivalent Linear Systems

Learning Goal

• Compare solutions for equivalent systems of linear equations.

Minds on ...

Let's solve the linear system
 x + 2y = 10 and 4x - y = -14 by
 graphing.

More minds on ...

- Just for fun, add the two equations and graph the new line. What do you notice?
- Subtract the two equations and graph the new line. What do you notice?
- Try something else, multiply the first equation by 2. What do you notice when you try to graph it?

Big Ideas

- Equivalent Systems of Linear Equations
 - Two or more systems of linear equations that have the same solution.

More Big Ideas

- You can create an equivalent system of linear equations by:
 - Adding or subtracting the equations in a linear system.
 - Multiplying one or both equations of a system by a constant other than 0.

Example

- Consider the linear system:
 - x 3y = 2 2x + y = -5
- Add and subtract the equations to create an equivalent linear system.
- Multiply each equation in the system by a different constant to create another equivalent linear system.

Solution

Consolidation

• A teacher claims that these systems of linear equations are equivalent. Is she correct?

System A	System B	System C
3x - 2y = 2	-7x + y = 10	x = -2
-10x + 3y = 8	13x - 5y = -6	y = -4

More Consolidation

Reinforcement

Pages 46 - 48
#3, 4, 6, 8a