

LEARNING GOAL

- Solve a linear system of equations using equivalent equations to remove a variable.

MINDS ON...

- Math Magic

Write down any ordered pair you want. don't show anybody!!!!!
Find the sum of your ordered pair, write it.down.
Find the difference of your ordered pair. write it down.
Now let's do some math magic!

BIG IDEAS

- Elimination Strategy

A method of removing a variable form a system of linear equations by creating an equivalent system in which the coefficientsof one of the variables are the same or opposites.

BIG IDEAS (CONT.)

HOW TO SOLVE USING ELIMINATION:

1. Express both equations in the form $a x+b y=c$.
2. Number the equations. (1) and (2)
3. Examine the two equations. Choose a variabble to elliminate.
4. Multiply one or both equations by a number or numbers that resullts im mew equation (3), or equations (3) and (4), in which the chosen variablle now thave the sanne coefficiemt.
5. Add the equations (if the sigisns of the coefficients of the chosen variable are diffferent) or subtract the equations (if the signs of the coefficients of the chosen variablle are the same) to ellimimatte the chosem variable.
6. Substitute the value into one of the original two equations and solve for the remaining variable.
7. State the point of intersection.
8. Verify, if necessary.

EXAMPLE \#1

Solve the linear system and verify your

 solution.$$
\begin{align*}
& 2 x+3 y=18 \tag{1}\\
& 5 x-4 y=-1 \tag{2}
\end{align*}
$$

Eliminate x.

$10 x+15 y$	$=90$
$-(10 x-8 y$	$=-2)$
$23 y$	$=92$
y	$=4$
Substitute $y=4$ into (1)	
$2 x+3(4)$	$=18$
$2 x+12$	$=18$
$2 x$	$=6$
x	$=3$

Equation 1: $2 x+3 y=18$
\therefore the point of intersection is $(3,4)$.

EXAMPLE \#1 (CONT)

- What if you had chosen the other

 variable? Would you get the same answer? Let's see...$$
\begin{aligned}
& 2 x+3 y=18 \quad \text { (1) } \times(4) \quad 8 x+12 y=72 \\
& 5 x-4 y=-1 \quad(2) \times(3)+(15 x-12 y=-3)
\end{aligned}
$$

Eliminate y.

$$
23 x=69
$$

$$
\text { Substitute } x=3 \text { into (1). }
$$

$$
\begin{array}{r}
2(3)+3 y=18 \\
6+3 y=18 \\
3 y=12
\end{array}
$$

\therefore the point of intersection is $(3,4)$.

$$
y=4
$$

EXAMPLE \#2

Solve the linear system.

$$
\begin{aligned}
& 3 x+2 y=6 \\
& x+3 y=16
\end{aligned}
$$

Did you get $(-2,6)$?

EXAMPLE \#3

Solve the $\begin{gathered}x+y=1\end{gathered}$
 $x-y=-9$

Did you get $(-4,5)$?

EXAMPLE \#4

Solve the linear system.

$$
\begin{aligned}
& -2 x+5 y=13 \\
& -2 x+7 y=19
\end{aligned}
$$

Did you get $(1,3)$?

EXAMPLE \#5

Solve the linear system.

$$
\begin{aligned}
& 3 x+2 y=22 \\
& 5 x-4 y=22
\end{aligned}
$$

Did you get $(6,2)$?

CONSOLIDATION

o Should I pick x or y ? How and why?

$$
\begin{array}{c|c}
4 x+2 y=8 & x+2 y=3 \\
5 x-3 y=4 & -x+y=-2 \\
x+4 y=7 & 2 x+5 y=6 \\
2 x-4 y=-3 & -x+2 y=3 \\
\hline-2 x+3 y=7 & 2 x-3 y=-2 \\
2 x-5 y=-3 & 3 x+3 y=4
\end{array}
$$

REINFORCEMENT

