Equation of a
 Circle

Learning Goal

- Develop and use an equation for a circle.

Minds On...

-Where do we see circles in nature?

Big Ideas

- Using the distance formula, you can show that the equation of a circle with centre $(0,0)$ and radius r is $x^{2}+y^{2}=r^{2}$.

Example \#1

- Write the equation of a circle with centre $(0,0)$ and a radius of $2 / 3$ units.

$$
\begin{aligned}
& x^{2}+y^{2}=\left(\frac{2}{3}\right)^{2} \\
& x^{2}+y^{2}=\frac{4}{9}
\end{aligned}
$$

Example \#2

- A circle is defined by the equation $x^{2}+y^{2}=16$. Sketch a graph of this circle.

Example \#3

- A circle has centre $(0,0)$ and passes through the point $(-5,12)$. Find the equation of the circle.

$$
\begin{aligned}
(-5)^{2}+(12)^{2} & =r^{2} \\
25+144 & =r^{2} \\
169 & =r^{2}
\end{aligned}
$$

Therefore, the equation of the circle is $x^{2}+y^{2}=169$.

Example \#4

- A stone is dropped into a pond and sends out a circular ripple whose radius increases by $2 \mathrm{~cm} / \mathrm{s}$. Find the equation of the circle 8.5 s after the stone is dropped.
- Solution
- If the radius grows $2 \mathrm{~cm} / \mathrm{s}$, then after 8.5 s the radius is $2 \times 8.5=17 \mathrm{~cm}$. The equation of the circle at this time is $x^{2}+y^{2}=17^{2}$ or $x^{2}+y^{2}=289$.

Consolidation

- Write an equation for a circle that models each situation.
- The possible locations of the epicentre of an earthquake, which is recorded to be a distance of 144 km from a seismograph station in Toronto.
- The path of a satellite in a circular orbit at a distance of 19000 km from the centre of Earth.
- The rim of a bicycle wheel with a diameter of 70 cm .
- The cross-section of a storm-water tunnel that has a diameter of 2.4 m .

Reinforcement

- Pages 92-93
- \#4-7,10, 13

