Factored Form of a Quadratic Relation

Learning Goal

- Relate the factors of a quadratic relation to the key features of its graph.

Minds on ...

- Let's watch a GIZMO!

Big Ideas

- A second way of writing the equation of a quadratic relation is called FACTORED FORM.
- It is $\mathrm{y}=\mathrm{a}(\mathrm{x}-\mathrm{r})(\mathrm{x}-\mathrm{s})$.
- You can find the key features of the parabola from this equation. (You may have to perform some calculations.)

Big Ideas (continued)

- The zeros (x-intercepts) are the values of r and s .
- The equation of the axis of symmetry is the vertical line halfway between any two symmetric points on the parabola (such as the zeros).
- This is also the x -coordinate of the vertex.

$$
x=\frac{(r+s)}{2}
$$

Big Ideas (continued again)

- The y-coordinate of the vertex is found by substituting the x-coordinate of the vertex into the equation and evaluating.
- The y-intercept is found by substituting a value of $\mathrm{x}=0$ into the equation and evaluating or using the relationship $\mathrm{c}=\mathrm{ax} \mathrm{rxs}$.

Example \#1

- Identify the key features for the parabola with the equation $y=2(x-1)(x+2)$ and sketch the graph.

Example \#2

- A quadratic relation has an equation of the form $y=a(x-r)(x-s)$, determine the value of a when the parabola has x-intercepts at $(5,0)$ and $(-3,0)$ and a maximum value of 6 .

Consolidation

- Let's try \#2 on page 155 together!

Reinforcement

- Pages 156-157
" \#4, 5, 6abc, 7c, 11, 14(table)

