MPM2D - More Exam Review

1. Solve the following linear system by graphing.
(1) $y=\frac{-1}{3} x+3$
P.O.I $(-3,4)$
(2)
(1)

LS	RS
y	$-1 / 3 x+3$
4	$-\frac{1}{3}(-3)+3$
	$\frac{3}{3}+3$

(2)

2. EDFS is holding a homecoming dinner and dance. The cost of the tickets to attend the dinner and dance afterwards is $\$ 40$ per person. The cost of the tickets to attend the dance only is $\$ 25$ per person. If a total of 350 tickets have been sold and $\$ 11750$ has been collected, determine how many people are attending the dinner and dance and how many will be attending the dance only.
Let d the \# of people attuning dime and doe Let j represent \# of people chtenhingdare only
(1) $d+j=350$
(2) $40 d+25 j=11750$
in (1)

$$
d=350-j
$$

subst in

$$
\begin{aligned}
& 40(350-j)+25 j=11750 \\
& 14000-40 j+25 j=11750 \\
& 14000-15 j=11750 \\
& 14000 \\
&-15 j=11750-14000 \\
&-15 j=-2250 \\
& j=\frac{-2250}{15} \\
& j=150
\end{aligned}
$$

I 50 people went to the dance only

$$
350-150=200
$$

200 people went to the dimer E dance
3. Determine the area of $\triangle \mathrm{NJB}$ (to the nearest hundredth). Show your work

$$
\begin{aligned}
A=\frac{b h}{2} \quad J B & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(6-(-1))^{2}+(5-(-5))^{2}} \\
& =\sqrt{7^{2}+10^{2}} \\
& =\sqrt{49+100} \\
& =\sqrt{149} \\
J B & =12.21
\end{aligned}
$$

$$
\begin{aligned}
N C & =\sqrt{7^{2}+(-5)^{2}} \\
& =\sqrt{49+25} \\
& =\sqrt{74} \\
N C & =8.6
\end{aligned}
$$

$$
A=\frac{(8.6)(12.21)}{2}
$$

$$
A=5^{2} 2.50 \text { units }^{2}
$$

4. $\triangle P Q R$ with vertices $P(7,7), Q(-3,-5)$, and $R(5,-3)$. Determine the equation of the median from R. Include a sketch with your solution.
midpoint to a Vertex

$$
\begin{aligned}
M_{P Q} & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\frac{7+(-3)}{2}, \frac{7+(-5)}{2} \\
& =\frac{4}{2}, \frac{2}{2} \\
M_{P Q} & =2,1
\end{aligned}
$$

Eqn of Median $y=m x+b$
(1) Set slope

$$
\begin{array}{rl}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & =\frac{-3-1}{5-2} \\
x 4 & m
\end{array}
$$

(2) Set b use 2,1
$b=\frac{3 / 3+6 / 3}{b}=1 / 3$ $1=-4 / 3(2)+b$ $1=-8 / 3+b$

