LENGTH OF A LINE SEGMENT

$\|\|$
 Learning Goal

- Determine the length of a line segment.

Minds On...

Suppose that the city in which you live has a system of evenly spaced perpendicular streets, forming square city blocks. The map below shows your school; your house, which is located two blocks west and five blocks north of the school; and your best friend's house, which is located eight blocks east and one block south of the school.

Big Ideas

- The distance, d , between the endpoints of a line segment, $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ can be calculated using the distance formula:

$$
\begin{aligned}
& d^{2}=\Delta x^{2}+\Delta y^{2} \\
& d^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \\
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
\end{aligned}
$$

Big Ideas (Continued)

- The Pythagorean theorem is used to develop the distance formula, by calculating the straight-line distance between two points.
- The distance between a point and a line is the shortest distance between them. It is measured on a perpendicular line from the point to the line.

Example \#1

- Find the distance between the points $A(3,5)$ and $B(-2,1)$. Round to the nearest tenth.

$$
\begin{aligned}
& d=\sqrt{(5-1)^{2}+(3-(-2))^{2}} \\
& d=\sqrt{(4)^{2}+(5)^{2}} \\
& d=\sqrt{16+25} \\
& d=\sqrt{41} \\
& d \approx 6.4
\end{aligned}
$$

III Example \#2

- A triangle has vertices at $A(-1,-1)$, $B(2,0)$, and $C(1,3)$. Find the lengths and slopes of the sides of the triangle. What kind of triangle is it?

Side $C B$
Side AB
slope: $m_{C B}=y_{2}-y_{1}$

$$
x_{2}-x_{1}
$$

$$
=\frac{0-3}{2-1}
$$

$$
=\frac{-3}{1}
$$

$$
\begin{aligned}
& m_{C B}=-3 \\
& d_{C B}=\sqrt{\left(y_{2}-y_{1}\right)^{2}+\left(x_{2}-x_{1}\right)^{2}} \\
&=\sqrt{(-3)^{2}+(1)^{2}} \\
&=\sqrt{9+1} \\
&=\sqrt{10} \\
& d_{C B}=3.16
\end{aligned}
$$

Isoscles

\checkmark slopes are negative reciprocals
\therefore Right triangle

$$
\begin{aligned}
d_{A B} & =\sqrt{\left(y_{2}-y_{1}\right)^{2}+\left(x_{2}-x_{1}\right)^{2}} \\
& =\sqrt{(1)^{2}+(3)^{2}} \\
& =\sqrt{1+9} \\
& =\sqrt{10}
\end{aligned}
$$

$\therefore \triangle A B C$ is a right isosceles triangle.

Consolidation

- Know it! What was that formula again (without looking)?

$$
\sigma=\sqrt{\left(y_{2}-y_{1}\right)^{2}+\left(x_{2}-x_{1}\right)^{2}}
$$

HW Takeup pg. 79 \#6.

$$
M(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{\left(y_{1}+y_{2}\right.}{2}\right)
$$

$M(1,1) \quad \frac{x \text { coordinate }}{p \text { peint }}$ of othe
$P(-3,-1)$
y coord of other paint

$$
1=\frac{-3+x_{2}}{2}
$$

$$
\begin{array}{rlrl}
1=-\frac{1+y_{2}}{2} & 2(1) & =-3+x_{2} \\
2(1)=-1+y & 2 & =-3+x_{2} \\
2 & =-1+y & 2+3 & =x_{2} \\
2+1 & =y_{y} & & 5
\end{array}
$$

$\therefore(5,3)$ is the other.i.t.
midsegments - line segment from midpoint of I side to the midpoint of another.

$$
p(7,7)
$$

$$
\begin{aligned}
M_{P Q} & =\left(\frac{-3+7}{2}, \frac{-5+7}{2}\right) \\
& =(2,1) \\
M Q R & =\left(\frac{-3+5}{2}, \frac{-5-3}{2}\right) \\
& =(1,-4)
\end{aligned}
$$

Reinforcement

- Pages 86-87
- \#4abc, 5abc, 7, 10, 12a

