$$
\begin{array}{r}
\text { CLASSIFYING } \\
\text { FIGURES ON A } \\
\text { COORDINATE GRID }
\end{array}
$$

## Learning Goal

- Use properties of line segments to classify twodimensional figures.


## What type of triangle is it?

- Sketch the triangle.
- Use the distance between two points formula to find the lengths of all three sides. If ...
- All sides are different $\rightarrow$ SCALENE
- Two sides are the same $\Rightarrow$ ISOSCELES
- All sides are the same $\Rightarrow$ EQUILATERAL
- Calculate the slopes of all 3 sides. If ...
- Two sides are perpendicular (the slopes are negative reciprocals) $\Rightarrow$ RIGHT TRIANGLE

Example 1

Determine the type of triangle described by the set of vertices $\mathrm{D}(7,-8), \mathrm{E}(0,-2), \& \mathrm{~F}(-2,5)$.


$$
\begin{array}{rlrl}
d_{E F} & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(0-(-2))^{2}+(-2-5)^{2}} \\
& =\sqrt{2^{2}+(-7)^{2}} & d_{F D}--\sqrt{(7-(-2))+(-8-5)^{2}} \\
& =\sqrt{4+49} & =\sqrt{9^{2}+(-13)^{2}} \\
d_{E F} & =\sqrt{53} \\
& =\sqrt{81+169} \\
m_{E F} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad d_{F D} & =\sqrt{250} \\
& =-7 / 2 & m_{F D} & =-13 / q=-1.4
\end{array}
$$

$$
\begin{aligned}
d_{E D} & =\sqrt{\left(y_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad m_{E D}=\frac{-6}{7} \\
& =\sqrt{(7-0)^{2}+(-8-(-2))^{2}} \quad m_{E D}=-0.86 \\
& =\sqrt{7^{2}+(-6)^{2}} \\
& =\sqrt{49+36} \\
d_{E D} & =\sqrt{85}
\end{aligned}
$$

$\therefore$ Scalene Triangle

## What type of quadrilateral is it?

- Sketch the quadrilateral.
- Use the distance between two points formula to find the length of all four sides. If ...
- All sides are the same $\Rightarrow$ SQUARE or RHOMBUS
- Opposite sides are the same $\Rightarrow$ RECTANGLE or PARALLELO GRAM
- Calculate the slopes of all 4 sides. If ...
- Two adjacent sides are perpendicular (the slopes are negative reciprocals) $\rightarrow$ Square or Rectangle

Example 2

Determine the type of quadrilateral described by the set of vertices $\mathrm{P}(-5,1), \mathrm{Q}(3,3), \mathrm{R}(4,-1), \& \mathrm{~S}(-4$,

$$
\begin{aligned}
& -3) \text {. Give reasons for your answers. }
\end{aligned}
$$

## Reinforcement

- Pages 101 - 103
- \#1-5, 11

