Pg $185 \# 5$.

$$
x \text { Ints: } \begin{aligned}
& x=-2 \\
& x=5
\end{aligned}
$$

The ad differences are negative
\checkmark parabola opens down
\therefore The y cordnanate a) is the maxima.
b)

c) A.O.S.

$$
\begin{aligned}
x & =\frac{-2+5}{2} \\
& =3 / 2=1.5
\end{aligned}
$$

Factored form:
$\operatorname{Pg} 187 \# 2$

$$
\begin{aligned}
& \text { Gored toimi } \\
& y=a(x-r)(x-s)
\end{aligned}
$$

$(-9,0)$ and $(19,0)$
Std. Form

$$
y=a x^{2}+b x+c
$$

zeros $x=-9$

$$
x=19
$$

a) A.O.S.

$$
\begin{aligned}
& x=\frac{-9+19}{2} \quad \text { b) } y=a(x-5)(x-1) \\
& x=\frac{10}{2} y \\
& x=a(x+9)(x-19) \\
&-28=a(5+9)(5-19) \\
&-28=a(14)(-14) \\
&-28=-196 a \\
& \frac{-28}{-196}=a \\
& \frac{28}{196}=a \\
& \frac{2}{14}=a \\
& \frac{1}{7}=a \\
& \therefore y=\frac{1}{7}(x+9)(x-19)
\end{aligned}
$$

LEARNING GOAL

- Determine the product of two binomials using a variety of strategies.

2 terms

BIG IDEAS

Expanding is MULTIPLYING using the distributive property.

Simplifying is COLLECTING the like terms by adding and subtracting.

BIG IDEAS (CONT)

Strategies that can be used to multiply two binomials are:
Algebra Tiles \rightarrow in t-xt book Area Diagram Distributive Property

EX1) AREA DIAGRAM

Expand and simplify
a) $(x-6)(x+2)$
b) $(x-3)(x-9)$
c) $(x+4)(x-11)$

$=\frac{x^{2}+2 x-6 x-12}{x^{2}-4 x-12}$
$=x^{2}-9 x-3 x+27$
$=x^{2}-12 x+27$
$=x^{2}-11 x+4 x-44$
$=x^{2}-7 x-44$

EX2) DISTRIBUTIVE PROPERTY
 Also known as FOIL,

- First
- Outside
- Inside
- Las \dagger

Just draw the arrows!!

- Expand and simplify.

MORE EXAMPLES
Expand and simplify.
(a)

$$
\begin{aligned}
& =2\left[x^{2}-1 x-8 x+8\right] \\
& =2\left[x^{2}-9 x+8\right] \\
& =2 x^{2}-18 x+16
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
& -3(x+5)^{2} \\
= & -3(x+5[x+5) \\
= & -3\left[x^{2}+5 x+5 x+25\right] \\
= & -3\left[x^{2}+10 x+25\right] \\
= & -3 x^{2}-30 x-75
\end{aligned}
$$

CONSOLIDATION

Make the connection!

- How did we go from factored form of the quadratic relation $y=(x-3)(x+6)$ to standard form of the same quadratic relation $y=x^{2}+3 x-18 ?$

REINFORCEMENT

- Pages 166-168
- \#3-10, 1 7*

