Quadratic

Models Using
Factored Form

Quiz \#6 (Front Page)
 1. For each of the following circle any representations of quadratic relations. (6 marks)

x	y	
-2	9	
-1	6	-3
0	5	-1
1	6	1
2	9	3

\times	y
-2	9
-1	. 6
0	3
1	0
2	-3

x	y
-2	-5
-1	-8
0	-17
1	-32
2	-53

$$
y=x^{2}+3 x-8
$$

$\begin{array}{ll}=12-8 x-3 x+24 & G-3 x-8 x \\ \text { Quadratic } & \text { Quadratic }\end{array}$
Quadratic

Quiz \#6 (Back Page)

2. Use the graph to state the indicated features. (6 marks)
a. The zeros are \qquad and \qquad
b. The vertex is \qquad -.
c. The equation of the axis of symmetry is $x=3$
d. The y-intercept is $y=8,(0,8)$
e. The direction of opening of this parabola is
 .

$$
\begin{aligned}
& A=\frac{a+b}{2} h \\
& \left.A=\frac{(x+1)(3 x+1)(2 x)}{x}\right)(2 x+2) \\
& A=[(x+1)(3 x+1)(x+1) \\
& A=\left(3 x^{2}+1 x+3 x+1\right)(x+1) \\
& A=\left(3 x^{2}+4 x+1\right)(x+1) \\
& A=3 x^{3}+3 x^{2}+4 x^{2}+4 x+1 x+1 \\
& A=3 x^{3}+7 x^{2}+5 x+1
\end{aligned}
$$

Pg 168 \# 17
a)

$$
\begin{aligned}
& (x+3)^{3} \\
= & ((x+3)(x+3)(x+3) \\
= & \left(x^{2}+3 x+3 x+9\right)(x+3) \\
= & \left(x^{2}+6 x+9\right)(x+3) \\
= & x^{3}+3 x^{2}+6 x^{2}+18 x+9 x+27 \\
= & x^{3}+9 x^{2}+27 x+27
\end{aligned}
$$

Learning Goal

- Determine the equation of a quadratic model using the factored form of a quadratic relation.

Big Ideas

- Steps to write the factored form of the equation of a quadratic relation from a graph:
- Start with $y=a(x-r)(x-s)$.
" Replace the " r " and " s " with the zeros of the curve.
" Find the "a" by substituting a point (x, y) into the equation and solving.

Example

- A parabola passes through the points $(-4,10),(-3,0),(-2,-6),(-$ $1,-8),(0,-6),(1,0)$, and $(2,10)$. Determine an equation for the parabola in factored form and then express your equation in standard form.

$$
\begin{aligned}
& x=-3 \\
& x=+1
\end{aligned}
$$

$$
\begin{aligned}
& y=2(x+3) x-1 \\
& y=2\left(x^{2}-1 x+3 x-3\right) \\
& y=2\left(x^{2}+2 x-3\right) \\
& y=2 x^{2}+4 x-6
\end{aligned}
$$

Consolidation

- Will this video work?

Reinforcement

- Pages 176-178
- \#6, 9, 11, 13

