

Big Ideas

- A quadratic relation's:
- GRAPH
- Is a symmetric curve called a parabola.
- It has a u-shape that either opens up or down.
- EQUATION
- One form is called standard form $y=a x^{2}+b x+c$, it has a degree of 2.
" The "a" gives the direction of the parabola.
- The "b" changes the line of symmetry.
" The "c" is the y-intercept.

Big Ideas

- A second way of writing the equation of a quadratic relation is called FACTORED FORM.
- It is $\mathrm{y}=\mathrm{a}(\mathrm{x}-\mathrm{r})(\mathrm{x}-\mathrm{s})$.
- You can find the key features of the parabola from this equation. (You may have to perform some calculations.)

Big Ideas

- The key features of a parabola:
- Y-intercept
(1)
- Zeros (x-intercepts)
- Vertex

3

- Equation of $\quad \chi=-1$ Axis of Symmetry
- Direction of Openingpens down

Constant Differences

Multiplying Binomials

Expanding is MULTIPLYING using the distributive property.

- Simplifying is COLLECTING the like terms by adding and subtracting.

Expanding

Strategies that can be used to multiply two binomials are:
Area Diagram
Distributive Property

Big Ideas

- Steps to write the factored form of the equation of a quadratic relation from a graph:
- Start with $\mathrm{y}=\mathrm{a}(\mathrm{x}-\mathrm{r})(\mathrm{x}-\mathrm{s})$.
" Replace the "r" and "s" with the zeros of the curve.
" Find the "a" by substituting a point (x, y) into the equation and solving.

Some Practice values are the same

$$
\text { A.o.s } x=\frac{-3+9}{2}
$$

- Pg. 160 \#4

4. The points $(-3,8)$ and $(9,8)$ lie on opposite sides of a parabola. Determine the equation of the axis of symmetry.

$$
x=\frac{6}{2}
$$

symmet

More Practice
8. The zeros of a parabola are -10 and $30 . x y$

- Pg. 160 \#8

$$
\begin{aligned}
& 50=-300 a \\
& \frac{50}{-300}=a \\
& -\frac{1}{6}=a \\
& \therefore y=-1 / 6(x+10)(x-30)
\end{aligned}
$$

a) Determine an equation for the parabola.
b) Determine the coordinates of the vertex.

$$
\left\{\begin{array}{l}
y=a(x+10)(x-30) \\
50=a(0+10)(0-30) \\
50=a(10)(-30) \\
50=a(-300)
\end{array}\right.
$$

Even More Practice
9. Determine an equation for this quadratic

- Pg. 160 \#9 relation.

$$
\left.\begin{array}{l}
y=a(x-r)(x-5) \\
y=a(x+2)(x+6) \\
y_{8}=a(-4+2)(-4+6) \\
8=a(-2)(2)
\end{array}\right] \begin{aligned}
& \text { A.0.5. } x=-4 \\
& \frac{8}{-4}=a \\
& a=-2
\end{aligned}
$$

$$
\begin{array}{rlrl}
4 \text { a) } & (-2)^{-5} & -2^{-5} \\
& =\frac{1}{(-2)^{5}} & =\frac{1}{-2^{5}} \\
& =\frac{1}{(-2) \times(-2) \times(-2) \times(-2) \times(-2)} & =\frac{1}{-(2 \times 2 \times 2 \times 2 \times 2)} \\
& =\frac{1}{-(32)} \\
& =\frac{-1}{32} & & =\frac{-1}{32}
\end{array}
$$

$$
\begin{aligned}
& (-2)^{4} \\
= & (-2) \times(-2) \times(-2) \times(-2) \\
= & 16
\end{aligned}
$$

New Work

- Pg. 160 \#1,2,7abc
- Quiz Friday

