

LEARNING GOALS

- Discover the relationship between the coefficients and constants in a trinomial and the coefficients and constants in its factors.
- Factor quadratic expressions of the form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$, where a $=1$.

KEEP YOUR MINDS ON ...

- Remember expanding?

ITS MAGICHL!

Magic Number $\# 1$	Magic Number $\# 2$	Sum	Product
3	4	7	12
-2	3	1	-6
6	-8	-2	-48
-4	-2	-6	8
4	5	9	20
-2	5	3	-10
-3	1	-2	-3
-7	-3	-10	21
9	6	15	54
5	-5	10	25
4	-4	0	-16

EXAMPLES

- Factor: $x^{2}+14 x+45=(x+9)(x+5)$

$$
\begin{array}{ll}
x^{2}-11 x+28 & =(x-7)(x-4) \\
x^{2}-x-30 & =(x-6)(x+5) \\
x^{2}+9 x-22 & =(x+11)(x-2) \\
x^{2}-100 & =(x+10)(x-10) \\
x^{2}+12 x+36 & =(x+6)(x+6)
\end{array}
$$

\mathbb{T} special cases that we 'll talk about later!

BIC IDEAS

- If a quadratic expression of the form $x^{2}+b x+c$ can be factored,
- it can be factored into two binomials, $(x+r)$ and $(x+s)$, where $r+s=b$ and $r \times s=c, r$ and s are integers.

BIG IDEAS (CONTINUED)

- Sometimes you will need to common factor the trinomial first.
- For example, factor $3 x^{2}-18 x-48$.

$$
\begin{aligned}
& 3 x^{2}-18 x-48 \\
= & 3\left(\frac{3 x^{2}}{3}-\frac{18 x}{3}-\frac{48}{3}\right) \\
= & 3\left(x^{2}-6 x-16\right) \\
= & 3(x+2)(x-8)
\end{aligned}
$$

What if I get stuck?
gr)

$$
\begin{aligned}
& x^{2}-5 x-24 \text { ouse ax }
\end{aligned}
$$

Check

$$
\begin{aligned}
& (x-8) x+3) \\
= & x^{2}+3 x-8 x-24 \\
= & x^{2}-5 x-24
\end{aligned}
$$

CONSOLIDATION

x^{2}
 $+b x+c$

REINFORCEMENT

$$
\begin{aligned}
& =\begin{array}{l}
\text { Pages } 211-213 \\
=\# 4-9,12,16,19^{*}, 20^{*}
\end{array} \\
& \forall 4,6-9,12,16
\end{aligned}
$$

