Factoring Quadratics: Special Cases

Learning Goal

(0) Factor perfect-square trinomials and difference of squares.

Minds on...

(2) How do you find the area of a square?

$$
\begin{aligned}
A=l \times w & \sigma r
\end{aligned} A=l \times l
$$

© What if I give you the area of the square, how do you find its dimensions?

- We think of polynomials as area models.

Minds on...

Factors	Perfect Square	Factors	Perfect Square
1×1	$=1$	11×11	$=121$
2×2	$=4$	12×12	$=144$
3×3	$=9$	13×13	$=169$
4×4	$=16$	14×14	$=196$
5×5	$=25$	15×15	$=225$
6×6	$=36$	16×16	$=256$
7×7	$=49$	17×17	$=289$
8×8	$=64$	18×18	$=324$
9×9	$=81$	19×19	$=361$
10×10	$=100$	20×20	$=400$

Big Ideas

© Perfect Squares
© Factor each of the following:

$$
\sqrt{9}=3
$$

\bigcirc

$$
p+49
$$

$$
5:-14
$$

$$
\begin{aligned}
& x^{2}-14 x+49 \\
= & (x-7)(x-7) \\
= & (x-7)^{2}
\end{aligned}
$$

$$
O R x^{2}-14 x+49
$$

$$
\sqrt{x^{2}}=1 x
$$

$$
b \times a \sqrt{49}=7
$$

$$
=(x-7)^{2}
$$

$$
\begin{aligned}
& 9 x^{2}-30 x+25 \sqrt{25} \leq 5 \\
& =(3 x-5)^{2} \quad(3)(5)(2)=30 \\
& \text { Check: } 3 x-5)(3 x-5) \\
& =9 x^{2}-15 x-15 x+25 \\
& =9 x^{2}-30 x+25
\end{aligned}
$$

Factor

$$
\begin{aligned}
& 81 x^{2}+144 x+64 \\
= & (9 x+8)^{2}
\end{aligned}
$$

Check for

$$
\begin{aligned}
& \text { Perfect Square } \\
& \sqrt{81}=9 \\
& \sqrt{64}=8 \\
& (9)(8)(2)=144^{\sqrt{2}} \\
& 0
\end{aligned}
$$

Big Ideas (continued)

© Difference of Squares

- $a^{2}-b^{2}$
$=(a+b)(a-b)$
(0) Factor each of the following fully.

$$
\sqrt{x^{2}}=x
$$

$$
x^{2}-16
$$

$$
100 x^{2}-81
$$

$$
\begin{aligned}
& \sqrt{x^{2}}=x \\
& \sqrt{16}=4
\end{aligned} \quad=(x+4)(x-4)
$$

Check: $(x+4)(x-4)$

$$
\begin{aligned}
& =x^{2} \underbrace{-4 x+4 x}_{0}-16 \\
& =x^{2}-16
\end{aligned}
$$

Consolidation
© You need to be suspicious whenever you notice the perfect squares!

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { heck the middle } \\
\text { term! }
\end{array}\right. \\
& a^{2}+2 a b+b^{2} \\
& a^{2}-2 a b+b^{2}
\end{aligned}
$$

Reinforcement
(-) Pages 230-231

- \#1-11 (all every other part), 12*, 14 3-11

Check website tonight for tomorrow's note!

