Factoring Quadratics: $a x^{2}+b x+c$

Learning Goal

- Factor quadratic expressions of the form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$, where $\mathrm{a} \neq 1$.

Minds on ...

- Remember expanding?

$$
\begin{aligned}
& (2 x-3)(4 x+5) \\
= & 8 x^{2}+10 x-12 x-15 \\
= & 8 x^{2} \quad-2 x \quad-15
\end{aligned}
$$

Look for patterns!

Try something more algebraic...

- Decomposition
- Factor $3 x^{2}+11 x+6$

$$
a=3
$$

$$
b=11
$$

$$
c=6
$$

(x) $(3 x+2)+3(3 x+2)(a)$

$$
(a)(c)=(3)(b)
$$

$$
=(x+3)(3 x+2)
$$

STEPS:

1. Find the product of a and c.
2. Use the product of a and c and the sum b to find the magic numbers.
3. Rewrite the x-term as the sum of the magic numbers:
4. Factor by parts.
5. Common factor.
$5: 11$

$$
\begin{aligned}
& 9 \times 2=18 \\
& 9+2=11
\end{aligned}
$$

What about guessing?

- Trial and error
- Factor $3 x^{2}+11 x+6$

Trial \#1
3,1 1,6

$$
3 x y^{1}=1 x
$$

$$
6=\frac{18 x}{19 x} \times \text { we reed } 11 x
$$

$$
\begin{aligned}
\text { Trial \#2 } \begin{array}{rl}
3,1 & 61 \\
3 x & =6 x \\
1 x & y_{1}
\end{array}=\frac{3 x}{9 x} x \text { we need }
\end{aligned}
$$

Trialt3 3,1 2,3

$$
\begin{aligned}
& 3 x-z_{3}^{2}=\frac{2 x}{1 x} \\
& 1 x
\end{aligned}
$$

$$
\therefore(3 x+2)(x+3)
$$

Steps.

1. Find all the factors of a.
2. Find all the factors of e.
3. Use a chart to cross-multiply the factors.
4. Find the sum of these products.
5. Check this sum with the sum b .
6. When you find a match, write these factors in the brackets.

Big Ideas

- You can use the following strategies to factor:
- Decomposition
- Trial and error
- Magic X

Examples

- Factor the following using a method of your choice.

$(2 x(2 x+1)(-5)(2 x+1)$

$$
=(2 x-5)(2 x+1)
$$

Consolidation

- Think, pair, and share
- Take a minute to talk to your elbow partner about which method you think you will use to factor these more difficult trinomials and why that is your choice.

Reinforcement

- Read page 221 (examples 3 and 4) and page 222 Key Ideas and Need to Know
- Pages 223-224
- \#3-7, 9, 15

