SOLVING PROBLEMS USING QUADRATIC RELATIONS

LEARNING GOAL

- Model and solve problems using the vertex form of a quadratic relation.

BIC IDEAS

EXAMPLE

- Graph the quadratic relation
$y=-3 x^{2}+12 x+15$ by finding the x-intercepts and the vertex

$$
\begin{aligned}
& y=-3\left(x^{2}-4 x-5\right) \quad P:-5 \\
& y=-3(x-5)(x+1) \quad 5:-4 \\
& \text { zeros } \quad x-5=0 \quad x+1=0 \\
& x=5 \quad x=-1
\end{aligned}
$$

A. OS

$$
\begin{aligned}
& x=\frac{5+(-1)}{2} \\
& x=\frac{4}{2} \\
& x=2^{2} \quad \begin{array}{l}
y=-3(2-5)(2+1) \\
y=-3(-3)(3) \\
y=27
\end{array},
\end{aligned}
$$

MORE BIG IDEAS

ANOTHER EXAMPLE
Write the quadratic relation $\mathrm{y}=(\mathrm{x}-2)^{2}-9$ in factored and standard forms.
(1) Expand : simplify (Stol fin)
(2) Factor (Factored Form)

$$
\begin{aligned}
& y=(x-2)^{2}-9 \\
& y=(x-2)(x-2)-9 \\
& y=x^{2}-2 x-2 x+4-9
\end{aligned}
$$

(1) $y=x^{2}-4 x-5$

$y=(x-5)(x+1)$

CONSOLIDATITON

- To go from vertex to factored form without graphing, you could also try first rewriting in standard form and then factoring this.

CONNECTING STANDARD AND VERTEX FORMS

LEARNING GOAL

- Sketch or graph a quadratic relation with an equation of the form $y=a x^{2}+b x+c$ using symmetry.

MINDS ON ... (CONT)

- Now let's put some math into it!
- (a)(b) $=0$
- Okay, now some x's!
- $(x-3)(x+4)=0$
$x-3=0 \quad O R$

$$
x+4=0
$$

You just solved a quadratic equation!

MORE MINDS ON ...

- Can you find a pair of symmetric points?
- Why are they symmetric?

$$
\begin{gathered}
(2,8) \\
(4,8) \\
\text { A.0.5. } \\
\begin{aligned}
x & =\frac{2+4}{2} \\
& =\frac{6}{2} \\
x & =3
\end{aligned}
\end{gathered}
$$

MORE MINDS ON ... (CONT)

- Not all equations have zeros, but they do all have a vertex.
- We can therefore write all equations in vertex form even if we cannot write them in factored form.
- Instead of using zeros to find the vertex, we use symmetric points and solve a quadratic equation.

BIC IDEAS

- You can use a technique called partial factoring to find the vertex form of a quadratic relation given standard form:
- Common factor the x^{2} - and x -terms.
- Let y equal the value of the constant term.
- Solve the resulting quadratic equation.
- This gives two symmetric points on the curve.
- Use the symmetric points to find the vertex.

EXAMPLE 1

- Find the vertex form of

$$
\begin{aligned}
& y=\underbrace{2}+2 x+5 \\
& y=x(x+2)+5
\end{aligned}
$$

Let $y=5$

$$
5=x(x+2)+5
$$

Ac., $x=-\frac{2+0}{2} 5-5=x(x+2)+5-5$
$\begin{aligned} & x=\frac{-2+0}{x=-1} \\ & x=-1\end{aligned} \quad=x(x+2)$
2 points on the parabola

$$
\begin{array}{ll}
(0,5) \text { and }(-2,5) & x+2=0 \\
\left(\begin{array}{l}
x=-2
\end{array}\right.
\end{array}
$$

EXAMPLE 2

- Find the vertex form of

$$
\begin{aligned}
\therefore & A, S \\
& x=\frac{0+14}{2} \\
& x=7
\end{aligned}
$$

y coordinate of vertex

$$
\begin{aligned}
& y=-3(7)^{2}+42(7)-147 \\
& \begin{array}{l}
y=-3(49)+294-147 \\
y=-147+294
\end{array} \\
& \begin{array}{l}
y=-147+294-147 \\
y=0 \operatorname{vertex}(7,0)
\end{array} \\
& -147+147=-3 x(x-14)-147+147 \\
& 0=-3 x(x-14) \\
& -3 x=0 \quad x-14=0 \\
& \therefore(0,-147) \text { and } x=0 \quad x=14
\end{aligned}
$$

Vertex Form

$$
\begin{array}{r}
\text { at ex Form } \\
y=a(x-h)^{2}+k \\
y=-3(x-7)^{2}+0 \\
y=-3(x-7)^{2} \\
y=-3 x^{2}+42 x-147 .
\end{array}
$$

$$
y=-3 x(x-14)-147
$$

$$
\begin{array}{rl}
\text { Let } \begin{aligned}
y= & -147 \\
& -147
\end{aligned}=-3 x(x-14)-147 \\
-147+147 & =-3 x(x-14)-147+147 \\
0 & =-3 x(x-14) \\
& -3 x=0 \quad x-14=0 \\
x & x=0 \quad x=14
\end{array}
$$

$(14,-147)$ are 2 pts on the parabola.

CONSOLIDATITON

$$
\operatorname{Pg} .295 \# 16
$$

Vertex Form: $y=a(x-h)^{2}+k$

$$
\begin{aligned}
& y=a(x-25)^{2}+30 \\
& 0=a(0-25)^{2}+30
\end{aligned}
$$

A pant on
the parabola is $\binom{x_{, ~ y}^{, y}}{a_{0}}$
solve
for a

$$
\begin{aligned}
y=-0.048(x-25)^{2}+30 & -30
\end{aligned}=625 a \quad \begin{aligned}
& a=\frac{-30}{625} \quad a=-0.048
\end{aligned}
$$

8 m from the axis of symatery. A, os. $\quad x=25$

$$
\begin{gathered}
25-8=17 \mathrm{~m} \\
25+8=33 \mathrm{~m} \\
y=-0.04:(x-25)^{2}+30 \\
y=-0.048(33-25)^{2}+30 \\
y=-0.048(8)^{2}+30 \\
y=-0.048(64)+30 \\
y=-3.072+30 \\
y=26.928
\end{gathered}
$$

\therefore The sarboot w. ll fit

REINFORCEMENT

- Pages 293-295
- \#5a, 6a, 7, 9, 10, 11, 16, 17*

REINFORCEMENT

- Pages 301-302
- \#7, 8, 9, 12, 13, 14

