

LEARNING GOAL

Model and solve problems using the vertex form of a quadratic relation.

BIG IDEAS

EXAMPLE

- Graph the quadratic relation
- $y = -3x^2 + 12x + 15$ by finding the x-intercepts and the vertex 2,27 $y = -3(x^2 - 4x - 5)$ 3 = -4y = -3(x - 5)(x+1) x - 5 = 0 x + 1 = 0 x = 5 x = -1 $A. 0.5. \chi = 5+(-1)$ 2 $x = \frac{4}{2}$ $x = \lambda$) t I

MORE BIG IDEAS

Expand and simplify.

Vertex Form

and the second second

Use the step pattern to graph. OR Solve the equation.

ANOTHER EXAMPLE

 Write the quadratic relation y = (x – 2)² – 9 in factored and standard forms.

CONSOLIDATION

• To go from vertex to factored form without graphing, you could also try first rewriting in standard form and then factoring this.

LEARNING GOAL

• Sketch or graph a quadratic relation with an equation of the form $y = ax^2 + bx + c$ using symmetry.

MINDS ON ... (CONT)

- Now let's put some math into it!
 - (a)(b) = 0
- Okay, now some x's!
 - (x-3)(x+4) = 0 $\chi - 3 = 0$ $\chi = 3$ σR $\chi = -4$
- You just solved a quadratic equation!

MORE MINDS ON ...

- Can you find a pair of symmetric points?
- Why are they symmetric?

MORE MINDS ON ... (CONT)

- Not all equations have zeros, but they do all have a vertex.
- We can therefore write all equations in vertex form even if we cannot write them in factored form.
- Instead of using zeros to find the vertex, we use symmetric points and solve a quadratic equation.

BIG IDEAS

- You can use a technique called partial factoring to find the vertex form of a quadratic relation given standard form:
 - Common factor the x²- and x-terms.
 - Let y equal the value of the constant term.
 - Solve the resulting quadratic equation.
 - This gives two symmetric points on the curve.
 - Use the symmetric points to find the vertex.

EXAMPLE 1

30/41,4,7

CONSOLIDATION

Pg. 295 #16 (25,30) 50 m (50, 0) (0,0) Vertex Form $y = a(x-h)^{2} + k$ $y = a(x-25)^{2} + 30$ $0 = a(0-25)^{2} + 30$ A point on xyA point on x_{ij} the parebola is (0,0) 0 = a(-25) + 30the parebola is (0,0) $0 = a(-25)^2 + 30$ Solve for a $y = -0.048(x-25)^2 + 30$ -30 = 625a $\alpha = \frac{-3c}{625}$ $\alpha = -0.048$

From the artis of symmetry 8 mA, 0.5 X = 25 $25 - 8 = 17m^{2}$ 25 + 8 = 33m $y = -0.048(x-25)^{2}+30$ $y = -0.048(33-25)^2 + 30^{\circ}$ y = -0.048(8) + 30y = -0.048(64) + 30 y = -3.072 + 30 y = 26.928 $\therefore The Sarbord will fither$

REINFORCEMENT

- Pages 293 295
 - #5a, 6a, 7, 9, 10, 11, 16, 17*

REINFORCEMENT

- Pages 301 302
 - **#**7, 8, 9, 12, 13, 14

