\qquad
\qquad
Unit 5:Vertex Form of a Quadratic Relation-Quiz \#13
VF1 I can identify the vertex and axis of symmetry and explain the roles of a, h, and k as transformations applied to the base curve y $=x^{2}$ to create $y=a(x-h)^{2}+k$.

1. Match each equation with the correct graph. (4 marks)
A. $y=-x^{2}+3 \quad$ Vertex $(0,3)$
B. $y=2(x-2)^{2}+3$ opens up Vertex $(2,3)$
C. $y=-2(x+2)^{2}$ opes down Venter $(-2,0)$
D. $y=(x-2)^{2}-3$

$$
\text { Vatex }(2,-3)
$$

EQUATION:

$$
y=(x-2)^{2}-3
$$

$$
\text { EQUATION: } B
$$

$$
\begin{aligned}
& \text { EQUATION: } A \\
& y=-x^{2}+3
\end{aligned}
$$

EQUATION: C

$$
y--2(x+2)^{2}
$$

2. List the transformations in the order you would apply them to the graph of $y=x^{2}$ to obtain the given quadratic relation. (7 marks)
A. $y=(x-3)^{2}+11$
B. $y=-\frac{3}{4} x^{2}-2$
(1) Translated 3 units right
(2) Translated II units up
(1) Vertical compression factor of 3/4
(2) Reflected in the x-axis
(3) Translated 2 units down.
C. $y=5(x+7)^{2}$
(2) Reflections
(1) Vetted stretch by
(3) Translations. a factor of 5
(2) Translated 7 units to the left.
\qquad
\qquad

VF2 I can sketch the graph of $y=a(x-h)^{2}+k$ by applying transformations to the graph $y=x^{2}$.
3. Sketch the graph of the quadratic relation $y=-2(x-3)^{2}+1$ by applying the appropriate transformations in the correct order. (4 marks)

- (1) Vertical strath 2 by Factor of
(2) Reflected in

$$
x \text {-axis }
$$

- (3) Translated 3 units right Translated unit up

$$
\operatorname{Ventan}(3,1)
$$

- factored form
A.O.S,

$$
x=\frac{r+s}{2}
$$

- Partid factoring

$$
y=x^{2}+5 x+8
$$

Let $y=8$

$$
\begin{array}{rlr}
8 & =x^{2}+5 x+8 \\
8-8 & =x^{2}+5 x+8-8 \\
0 & =x^{2}+5 x & \\
0 & =x(x+5) \quad \text { A.0.5 } \\
x & x \quad x+5=0 & x=\frac{0+(-5)}{2} \\
& x=-5 / 2 \\
& x=-2.5
\end{array}
$$

$$
\therefore(0,8) \div(-5,8)
$$

are 2pts. of the paraboln

Pg. 294 \# 11
Revenue questions

$$
\begin{aligned}
\text { Revenue } & =\binom{\# \text { of tens }}{\text { sold }}\binom{\text { selling }}{\text { price }} \\
& =(300)(\$ 5) \\
& =\$ 1500
\end{aligned}
$$

Step 1 Let x represent the \# of price increases

$$
\begin{aligned}
& \text { Step 2 } \\
& \text { Selling Price }=\$ 5+\$ 0.50 x \\
& \text { \#of Items }=300-30 x
\end{aligned}
$$

Sold

Step 3 Revenue $=(300-30 x)(5+0.5 x)$
step 4 Find the zeros

$$
\begin{aligned}
& R=(300-30 x)(5+0.5 x) \\
& 0=(300-30 x)(5+0.5 x) \\
& 300-30 x=0 \\
& 300=30 x
\end{aligned} \begin{array}{cc}
R+0.5 x=0 \\
\frac{300}{30}=x & x=\frac{-5}{0.5} \\
10=x & x=-10
\end{array}
$$

$$
\text { Aulos. } \begin{aligned}
x & =\frac{10+(-10)}{2} \\
& =\frac{0}{2} \text { dort change } \\
x & =0^{2} \text { the price }
\end{aligned}
$$

$\operatorname{Pg} 302 \# 13$

$$
P=-30 t^{2}+450 t-790
$$

t is ticket price
A os.
Patio Factoring

$$
p=-790
$$

$$
\begin{aligned}
-790 & =-30 t^{2}+450 t-790 \\
-790+790 & =-30 t^{2}+450 t-790+790 \\
0 & =-30 t^{2}+450 t \\
& =-30 t(t-15 \\
-30 t & =0 \quad t-15=0 \\
t & =0 \quad t=15
\end{aligned}
$$

AOL

$$
\begin{aligned}
& t=\frac{0+15}{2} \\
& t=7.5
\end{aligned}
$$

\therefore A ticket price of $\$ 7,50$ will maximize the profit.

Quick Review
3 forms of a Quadratic Relation
Standard Form: $y=a x^{2}+b x+c \quad c \quad$ Info Given
Factored Form: $y=a(x-r)(x-s)$ zeros are
Vertex Form: $y=a(x-h)^{2}+k$ Vertex is (h, k)
In all forms ' a ' tells us:

- if there is a stretch or compression
- if a is $(-)$ apens dawn
if a is (t) opens up.
Axis of symmetry:
- x coordinate of the vertex
(h in vertex form)
- vertical line that splits the parabola in half

