COMPLETING THE
 SQUARE

Learning Goals

- Recognize the relationship between the coefficients and constants of perfectsquare trinomials.
- Write the equation of a parabola in vertex form by completing the square.
- Infomercial for today's lesson...
- Are you annoyed with all the work you have to do with partial factoring?
- Do you sometimes wonder if there is an easier way to go from vertex form to standard form without all the hassle?
- Well, there is!
- After you learn to complete the square you'll be able to finish the question in just 5 easy steps!

Big Idea

- Completing the square is a technique which allows you to rewrite standard form into vertex form without finding any symmetric points.

Steps to Complete the Square:

1. Find " a ". (If necessary)
a) Common factor only the coefficients of the quadratic and linear terms.
2. Add zero.
a) Determine what constant would create a perfect square by dividing the linear coefficient by 2 and squaring it.
b) Add and subtract this number at the same time.
3. Create the perfect square. (If necessary)
a) If there was a value for "a", multiply the negative constant by this to remove it from the bracket.
4. Factor the perfect square.
5. Simplify the constants.

Example

1. Rewrite $y=x^{2}+8 x+13$ in vertex form by completing the square.

$$
\begin{aligned}
& y= x^{2}+8 x+13 \\
& y= x^{2}+8 x+16-16+13 \\
& \text { FACTOR Add zero } \\
& \text { SIMPLIFY }
\end{aligned}
$$

$$
y=(x+4)^{2}-3
$$

Example
2. Rewrite $y=x^{2}-18 x+100$ in vertex form by completing the

$$
\begin{aligned}
& \text { square. } \\
& \left.\begin{array}{l}
y=x^{2}-18 x+100 \\
y=x^{2}-18 x+8 \\
y=\left(x^{2}-9\right)^{2}+19 \\
y
\end{array}\right)=\frac{(-0}{18}+100 \\
& \operatorname{Vertex}(9,19)
\end{aligned}
$$

Example

2. Rewrite $y=x^{2}-18 x+100$ in vertex form by completing the square.

$$
\begin{aligned}
& y=x^{2}-18 x+100 \\
& y=x^{2}-18 x+81-81+100 \\
& y=(x-9)^{2}+19
\end{aligned}
$$

Example
3. Rewrite $y=2 x^{2}+8 x+9$ in vertex form by completing the square.

$$
\begin{aligned}
y & =2 x^{2}+8 x+9 \\
y & =\left(2 x^{2}+8 x\right)+9 \\
& =2\left(x^{2}+4 x\right)+9 \\
& =2(\underbrace{x^{2}+4 x+4})^{2}=2^{2}=4)+9 \\
& =2\left(x^{2}+4 x+4\right)-8+9
\end{aligned}
$$

$$
\begin{aligned}
& y=2(\underbrace{x^{2}+4 x+4}_{x})-8+9 \\
& y=2(x+2)^{2}+1
\end{aligned}
$$

vertex $(-2,1)$

Example

3. Rewrite $y=2 x^{2}+8 x+9$ in vertex form by completing the square.

$$
\begin{aligned}
& y=2 x^{2}+8 x+9 \\
& y=2\left(x^{2}+4 x\right)+9 \\
& \left.y=2\left(x^{2}+4 x+4-4\right)+9\right)^{2}=4 \\
& y=2\left(x^{2}+4 x+4\right)-8+9 \\
& y=2(x+2)^{2}+1
\end{aligned}
$$

Example

4. Find the vertex of the given relation, $y=3 x^{2}-30 x+79$, by completing the square.

$$
\begin{aligned}
& y=3 x^{2}-30 x+79 \\
& y=3\left(x^{2}-10 x\right)+79 \\
& y=3\left(x^{2}-10 x+25-25\right)+79 \\
& y=3\left(x^{2}-10 x+25\right)-75+79 \\
& y=3(x-5)^{2}+4 \\
& \therefore \text { the vertex is }(5,4) .
\end{aligned}
$$

Example
5. Find the vertex of the given relation, $y=-6 x^{2}+12 x-5$, by completing the square.

$$
\begin{align*}
& y=-6 x^{2}+12 x-5 \\
& y=\left(-6 x^{2}+12 x\right)-5 \\
& y=-6\left(x^{2}-2 x\right)-5 \\
& y=-6\left(x^{2}-2 x+1-1\right)-5 \\
& y=-6\left(x^{2}-2 x+1\right)+6-5 \\
& y=-6\left(x^{2}-1\right)^{2}+1 \tag{1,1}\\
& =1
\end{align*}
$$

Example

5. Find the vertex of the given relation, $y=-6 x^{2}+12 x-5$, by completing the square.

$$
\begin{aligned}
& y=-6 x^{2}+12 x-5 \\
& y=-6\left(x^{2}-2 x\right)-5 \\
& y=-6\left(x^{2}-2 x+1-1\right)-5 \\
& y=-6\left(x^{2}-2 x+1\right)+(-1)^{2}=1 \\
& y=-6(x-1)^{2}+1
\end{aligned}
$$

$$
\therefore \text { the vertex is }(1,1) \text {. }
$$

Consolidation

- What if there is a decimal? For example, complete the square of $y=0.5 x^{2}-4 x-8$ to express the relation in vertex form.

$$
\begin{aligned}
& y=\left(0.5 x^{2}-4 x-8\right. \\
& y=\left((0.5) x^{2}-4 x\right)-8 \\
& y=0.5\left(x^{2}-8 x\right)-8 \\
& y=0.5\left(x^{2}-8 x+16-16\right)-8 \\
& y=0.5\left(x^{2}-8 x+16\right)-8-8
\end{aligned}
$$

Reinforcement

- Pages 331 - 332 \#5, 8, 9, 10, 11

