COMPLETING THE SQUARE

Learning Goals

- Recognize the relationship between the coefficients and constants of perfectsquare trinomials.
- Write the equation of a parabola in vertex form by completing the square.

Minds on...

- Infomercial for today's lesson...
 - Are you annoyed with all the work you have to do with partial factoring?
 - Do you sometimes wonder if there is an easier way to go from vertex form to standard form without all the hassle?
 - Well, there is!
 - After you learn to complete the square you'll be able to finish the question in just 5 easy steps!

Big Idea

 Completing the square is a technique which allows you to rewrite standard form into vertex form without finding any symmetric points.

Steps to Complete the Square:

- 1. Find "a". (If necessary)
 - a) Common factor only the coefficients of the quadratic and linear terms.
- 2. Add zero.
 - a) Determine what constant would create a perfect square by dividing the linear coefficient by 2 and squaring it.
 - b) Add and subtract this number at the same time.
- 3. Create the perfect square. (If necessary)
 - a) If there was a value for "a", multiply the negative constant by this to remove it from the bracket.
- 4. Factor the perfect square.
- 5. Simplify the constants.

1. Rewrite $y = x^2 + 8x + 13$ in vertex form by completing the square. $\left(\frac{8}{2}\right)^2$ $=(4)^2=16$ $y = x^2 + 8x + 13$ Add zero $y = x^2 + 8x + 16 - 16 + 13$ FACTOR SIMPLIFY $y = (x + 4)^2 - 3$

2. Rewrite $y = x^2 - 18x + 100$ in vertex form by completing the square. $y = x^2 - 18x + 100$ $y = x^2 - 18x + 81 - 81 + 100$ $y = (x - 9)^2 + 19$

 $\gamma = 2(\chi^2 + 4\chi + 4) - 8 + 9$ H = 5(x+y) + 1Vertex (-2, 1)

- 3. Rewrite $y = 2x^2 + 8x + 9$ in vertex form by completing the square.
 - $y = 2x^{2} + 8x + 9 \qquad \left(\frac{4}{2}\right)^{2} = (2)^{2} = 4$ $y = 2(x^{2} + 4x) + 9$ $y = 2(x^{2} + 4x + 4 - 4) + 9$ $y = 2(x^{2} + 4x + 4) - 8 + 9$ $y = 2(x + 2)^{2} + 1$

4. Find the vertex of the given relation, $y = 3x^2 - 30x + 79$, by completing the square. **y = 3x^2 - 30x + 79** $\left(\frac{-10}{2}\right)^2 = (-5)^2 = 25$ $y = 3(x^2 - 10x) + 79$ $y = 3(x^2 - 10x + 25 - 25) + 79$ $y = 3(x^2 - 10x + 25) - 75 + 79$ $y = 3(x - 5)^2 + 4$ \therefore the vertex is (5, 4).

5. Find the vertex of the given relation, $y = -6x^2 + 12x - 5$, by completing the square. $y = -6x^2 + 12x - 5$ $\begin{pmatrix} -2\\ 2 \end{pmatrix} = (1)^2$ $y = (F0x^2 + 12x) - 5$ $y = -6(x^2 - 2x) - 5$ $y = -6(x^2 - 2x + 1 - 1) - 5$ $y = -6(x^{2} - 2x + 1) + 6 - 5$ $y = -6(x - 1)^{2} + 1$ Vertex (l, l)

5. Find the vertex of the given relation, $y = -6x^2 + 12x - 5$, by completing the square. $y = -6x^2 + 12x - 5$ $\left(\frac{-2}{2}\right)^2 = (-1)^2 = 1$ $y = -6(x^2 - 2x) - 5$ $y = -6(x^2 - 2x + 1 - 1) - 5$ $y = -6(x^2 - 2x + 1) + 6 - 5$ $y = -6(x - 1)^2 + 1$ \therefore the vertex is (1, 1).

Consolidation

• What if there is a decimal? For example, complete the square of $y = 0.5x^2 - 4x - 8$ to express the relation in vertex form. $-\frac{0}{2} = (-4)$ =)($y = (0.5)^2 - 4y - 8$ $y = (0.5x^2 - 4x) - 8$ $y = 0.5(x^{2} - 8x) - 8$ $y = 0.5(x^{2} - 8x + 16 - 1b) - 8$ $y = 0.5(x^2 - 8x + 16) - 8 - 8$

Reinforcement

• Pages 331 - 332 #5, 8, 9, 10, 11