ThI QUADRATLC
FORMULA

LEARNING GOAL

- Understand the development of the quadratic formula, and use the quadratic formula to solve quadratic equations.

MINDS ON ...

- Consider the quadratic relation

$$
y=x^{2}-4 x-7, \text { what are }
$$ the zeros?

- Can we factor this?
- Does it have zeros? It must have a vertex!

BIG IDEAS

- The roots of a quadratic equation of the form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ can be determined using the quadratic formula:

$$
y=a x^{2}+b x+c
$$

EXAMPLE

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- Solve $6 x^{2}-x-15=0$ using the quadratic formula.

$$
\begin{aligned}
& a=6, b=-1, c=-15 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(6)(-15)}}{2(6)} \quad x=\frac{1 \pm \sqrt{1+360}}{12} \\
&=\frac{1 \pm \sqrt{1-(-360)}}{12} \quad x=\frac{1 \pm \sqrt{361}}{12}
\end{aligned}
$$

$$
\begin{array}{ll}
x=\frac{1+19}{12} \\
x=\frac{1+19}{12} & x=\frac{1-19}{12} \\
x=\frac{20}{12} & x=\frac{-18}{12} \\
x=1.67 & x=-1.5
\end{array}
$$

\therefore The roots (zeros) are $x=-1.5$ and

$$
x=1,67
$$

ANOTHER EXAMPLE

- Solve $-2(x+5)^{2}+2=0$.

First we have to put in standard form

$$
\begin{aligned}
& -2(x+5)^{2}+2=0 \quad \text { Expand } \\
& -2(x+5)(x+5)+2=0 \quad \text { simplify } \\
& -2\left(x^{2}+5 x+5 x+25\right)+2=0 \\
& -2\left(x^{2}+10 x+25\right)+2=0 \\
& -2 x^{2}-20 x-50+2=0 \\
& -2 x^{2} \quad-20 x-48=0 \\
& a=-2 \quad b=-20 \quad c=-48
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-20) \pm \sqrt{(-20)^{2}-4(-2)(-48)}}{2(-2)} \\
& x=\frac{20 \pm \sqrt{400-(384)}}{-4} \\
& x=\frac{20 \pm \sqrt{16}}{-4} \\
& x=\frac{20 \pm) 4}{-4} \\
& x=\frac{20+4}{-4} \quad x=\frac{20-4}{-4} \\
& x=\frac{24}{-4} \quad x=\frac{16}{-4} \\
& x=-6 \quad x=-4
\end{aligned}
$$

\therefore The roots (zeros) are $x=-6$ and

$$
x=-4 .
$$

ONE LAST EXAMPLE
$k^{\text {Expand }}$

- Solve $2 \mathrm{x}(\mathrm{x}-5)=\mathrm{x}^{2}+1$.

$$
\begin{aligned}
& 2 x^{2}-10 x=x^{2}+1 \& \begin{array}{l}
\text { Put in } \\
\text { Standard } \\
\text { form. }
\end{array} \\
& 2 x^{2}-x^{2}-10 x-1=0 \\
& x^{2}-10 x-1=0 \\
& a=1 \quad b=-10 \quad c=-1 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-10) \pm \sqrt{(-10)^{2}-4(1)(-1)}}{2(1)} \\
& x=\frac{10 \pm \sqrt{100-(-4)}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{10 \pm \sqrt{100+4}}{2} \\
& x=\frac{10 \pm \sqrt{104}}{2} \\
& x=\frac{10 \pm 10.2}{2} \\
& x=\frac{10+10.2}{2} \quad x=\frac{10-10.2}{2} \\
& x=\frac{20,2}{2} \\
& x=10.1
\end{aligned} \quad x=\frac{-0.2}{2}
$$

\therefore The zeros are $x=10,1$ and $x=-0.1$

REINFORCEMENT

Page 343-344

- \#8acf, 9ac, 12, 13, 14

Don't Forget Test Manday.

$$
\begin{aligned}
& \text { Ch.5 + Completing } \\
& \text { \& Suataratic }
\end{aligned}
$$ Formula

