

Learning Goals

Explore the relationship between each side in an acute triangle and the sine of its opposite angle.

- Use the sine law to calculate unknown side lengths and angle measures in acute triangles.

Minds
 on

- What if, we are given $\triangle A B C$ is not a right triangle? SOHCAHTOA therefore cannot be applied.

The Sine Law

- In a non-right triangle $A B C$,
$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$
${ } }$
finding an angle.

Use this version when finding a side.

NOTE: You will only use 2 out of 3 ratios at a time. Depending on the information given.

Examples

1. Find the missing measurements.

$$
\begin{aligned}
& \frac{\sin C}{C}=\frac{\sin B}{b} \quad \sin C=0.5958 \quad \frac{d}{\sin 9^{\circ}} \\
& \frac{\sin C}{7}=\frac{\sin 50^{\circ}}{9} \quad \angle C=\sin ^{-1}(0.5958)
\end{aligned}
$$

$d=\frac{7.35\left(\sin 19^{\circ}\right)}{\sin 47^{\circ}}$
$d=7.35(0.3256)$
0.7314
$d=3.1 \mathrm{~m}$

Consolidation

Uot a Right

- Given 2 angles \& 1 side to find another side.
- Given 2 sides \& 1 opposite angle to find another angle.
[Reinforcement
- Page 433 \#3
$[$ Reinforcer
- Page $433 \# 3$

-
-

(
$-$
$1-2$

\square
,
1
$($
-
-
\square

