Unit 1: Linear Systems - Quiz #2

- L53 I am learning to use graphs to solve a pair of linear equations /5
 - 1. Solve the following linear system graphically. State the P.O.I. (5 marks)

- LS1 I am learning to model problems involving the intersection of straight lines using tables, graphs, and equations.

 /4
- 1. Mrs. Neave needs 200 g of chocolate that is 86% cocoa for a cake recipe. She has one kind of chocolate that is 99% cocoa and another kind that is 70% cocoa. How much of each kind of chocolate does he need to make the cake?
 - (a) Assign each unknown in the situation a variable, explaining in a statement what the chosen variable represents. (2 marks)

- (b) Represent this situation with a linear system. (2 Equations) (2 marks)

Name:	Date:	
i vario.	Daic.	

LS2	I am learning to solve systems of linear equations involving variables	
	using an algebraic method.	/6

2. Solve the following linear system algebraically (substitution method). Show all of your work. (6 marks)

$$2x + 3y = 3$$

$$2 \times + 3y = 3$$

$$2 \times + 3y = 3$$

$$2 \times + 3y = 3$$

$$3 \times + 3y = 3$$

$$2x - 5y = -27$$

$$2(3-3y) - 5y = -27$$

$$6 - 6y - 5y = -27$$

$$-11y = -27$$

$$-11y = -37$$

$$x = 3 - 3y$$
 $x = 3 - 3(3)$
 $x = 3 - 6$

250 g

((186.5 kg

Pg. 39 #7

- Equivalent Systems of Linear Equations
 - Two or more systems of linear equations that have the same solution.

7.01.

- You can create an equivalent system of linear equations by:
 - Adding or subtracting the equations in a linear system.
 - Multiplying one or both equations of a system by a constant other than 0.

Example

• Consider the linear system:

$$x - 3y = 2$$
 $2x + y = -5$

- Add and subtract the equations to create an equivalent linear system.
- Multiply each equation in the system by a different constant to create another equivalent linear system.

(1)
$$x - 3y = 2$$

(2) $2x + y = -5$
(3) $3x - 2y = -3$
(4) $-x - 4y = 7$

1 x-3y=2

Egn (1) x2

32x - 6y = 4

$$\begin{array}{c} (1) \quad x - 3y = 2 \\ (2) \quad 2x + y = -5 \end{array}$$

$$(2)$$
 $-(3)$

Elininated $2x + y = -5$
 $(x^2 + y^2) = -9$
 $(x^2 + y^2) = -9$

Consolidation

• A teacher claims that these systems of linear equations are equivalent. Is she correct?

System A	System B	System C
3x - 2y = 20	-7x + y = 10	x = -2
-10x + 3y = 82	13x - 5y = -6	y = -4

System B

$$-7x + y = 100$$
 $13x - 5y = -60$

I solate y in 0 y = 10 + 1x

Sub 3 in 2

 $13x - 5y = -6$
 $13x - 50 = 35x = -6$
 $-22x = -6 + 50$
 $-22x = -6 + 50$
 $-22x = -4 + 4$
 $x = -2$
 $y = 10 + 7(-2)$
 $x = -2$
 $x = -2$

Reinforcement

Pages 46 - 48#3, 4, 6, 8a

Note for 1.6 on line tonight.