PHYSICS!!! (SPH3U)

Key concepts:

- physics
- scientific inquiry
- observation
- qualitative
- quantitative
- metric
- precision
- accuracy

PHYSICS!!! (SPH3U)

Key concepts:

- physics
- scientific inquiry
- observation
- qualitative
- quantitative
- metric
- precision
- accuracy
- involves the study of the physical world

$$
\mathrm{E}=\mathrm{mc}^{2}
$$

PHYSICS!!! (SPH3U)

Key concepts:

- physics
- scientific inquiry
- observation
- qualitative
- quantitative
- metric
- precision
- accuracy
- Today...

PHYSICS!!! (SPH3U)

Key concepts:

- physics
- scientific inquiry
- observation
- qualitative
- quantitative
- metric
- precision
- accuracy
- Observations
- qualitative ("a bird is gliding to its nest")
- quantitative ("the car travelled at $60 \mathrm{~km} / \mathrm{hr}$ ")
\searrow quantity - number
- Models (representations) - Equations
- Graphs
- Descriptions

Theories (validated by many sahe divalues

$$
\begin{gathered}
\text { Einstein's Theory of Relativity } \\
E=m c^{2}
\end{gathered}
$$

The Metric System

Key concepts:

- physics
- scientific inquiry
- observation
- qualitative
- quantitative
- metric
- precision
- accuracy
o started a couple hundred years ago in France...needed a standard system that everyone could agree on
- 1970 - "metrication of Canada"
- most measurements metric by early 1980s
- 3 core measurements:
- length (m)
- mass (kg)
time (s)

Metric Prefixes

Key concepts:

- physics
- scientific inquiry
- observation
- qualitative
- quantitative
- metric
- precision
- accuracy
- often use prefixes in front of base units
- important to always CONVERT to BASE UNITS!

Factor	Prefix	Symbol
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{0}	---	---
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	η

Precision and Accuracy

Key concepts:

- physics
- scientific inquiry
o observation
- qualitative
- quantitative
- metric
- precision
- accuracy
- Precise - after taking a lot of measurements, you notice that they are all very close to each other.
- Accurate - after taking a lot of measurements, you find they agree with the true value.

Precision and Accuracy

Key concepts:

- physics
- scientific inquiry
- observation
- qualitative
- quantitative
- metric
- precision
- accuracy

Example 1: You perform an experiment to measure the temperature at which water boils.

$67^{\circ} \mathrm{C}$	$68^{\circ} \mathrm{C}$	$68^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	$66^{\circ} \mathrm{C}$

- these values are precise
(they are almost the same, they agree with each other)
- they are not accurate
- they would have to be at about $100^{\circ} \mathrm{C}$, the accepted value, to be accurate

Precision and Accuracy

Key concepts:

- physics
- scientific inquiry
- observation
- qualitative
- quantitative
- metric
- precision
- accuracy

Example 2: I ask you to throw five darts at the centre of a dart board.

Good Precision
Poor Accuracy

Poor Precision
Poor Accuracy

Good Precision Good Accuracy

Significant Digits (Sig Digs)

Key concepts:

- significant
digits
- error
- manipulating equations

5 sig digs

- example: 259.49
- any zeros between two non-zeros

3 sig digs o example: 104

- any zero to the right of both a decimal and a non-zero
2 sig digs o example: 0.0030
- ALL digits in scientific notation

$$
\begin{aligned}
& 5.2 \times 10^{3} \\
& 5200 \\
& 5.2 \times 10^{-3} \\
& 0.0052 \\
& \begin{array}{ccc|ccc}
& & & 0 & & \\
1 & 1 & 1 & 1 & 1 & 1 \\
-3 & -2 & -1 & & 1 & 2
\end{array} \\
& 2 \times 10^{5} \\
& \text { NI significant digit } \\
& 5.336 \times 10^{7} \\
& \text { K } 4 \text { sig digs }
\end{aligned}
$$

Significant Digits (Sig Digs)

Key concepts:

- significant digits
- error
- manipulating equations

NOT Significant

- leading zeros
o example: 0.000712 sig digs
- trailing zeros
o example: 28002 sig digs
***if zeros are meant to be sig digs, the number must be written as

$$
2.800 \times 10^{4} \quad 4 \text { sig digs }
$$

Rounding and Sig Digs

Key concepts:

- significant digits
- error
- manipulating equations

Adding and Subtracting

o check which number is the least precise (least numbers after decimal)

- use that many decimals in your final answer
- example:
$4.0)+12.32+2.03456=18.35456$
Final answer $=18.4$
I decimal place

Rounding and Sig Digs

Key concepts:

- significant
digits
- error
- manipula 4.123 equation 4.12
4.1
9.786
9.79
9.8

Multiplying and Dividing

o check which number has the fewest sig digs

- round answer so it has this many sig digs

NOTE:

- if digits dropped are less than 5, remaining digit is unchanged
- if digits dropped are greater than 5, remaining digit is increased
- if digit dropped is exactly 5 , remaining digit is roundod un to the nearest even number

8.750	6.450
8.8	6.4

Round to 2 sigdigs

$$
\begin{array}{ll}
& 6.49 \\
=6.51 \\
=6.5 & =6.5 \\
6.501 & 6.551 \\
=6.5 & =6.6 \\
6.75 & 6.65 \\
=6.8 & =6.6 \\
6.651 & \\
= & 6.7
\end{array}
$$

ERROR

Key concepts:

- significant digits
- error
- manipulating equations
- Error = difference between an observed value and the accepted value
- percent error is a measure of accuracy

```
percent error = lexperimental value - accepted valuel
``` accepted value
o example: you measure a pencil to be 102 mm , but the manufactured measures it to be 104 mm . Find the \%error.

\section*{ERROR}

\section*{Key concepts:}
- significant
digits
- error
- manipulating equations
- percent difference is a measure of precision
- tells you how far apart your measurements are
percent difference \(=\) difference in measurements average measurement
- example: you measure the length of a ramp twice and get 1.15 m and1.13m. Determine the percent difference between your values.

\section*{Manipulating Equations}

Key concepts:
- significant
digits
- error
- manipulating equations
- rearrange equation so the unknown value is on one side of the equation
- TWO RULES:
1. To move something to the other side, just do the opposite math operation to it.
2. If you do it to one side, do it to the other.

\section*{Manipulating Equations}

Key concepts:
- significant digits
- error
- manipulating equations
- example: Solve for \(m\)
\[
F=m a
\]
\[
\begin{aligned}
& \frac{F}{a}=\frac{m a}{a} \\
& \frac{F}{a}=m
\end{aligned}
\]
- example: Solve for \(v_{1}\)
\[
\begin{aligned}
& v_{2}^{2}=v_{1}^{2}+2 a d \\
& v_{2}^{2}-2 a d=v_{1}^{2}+2 a d-2 / a d \\
& \sqrt[v_{2}^{2}-2 a d]{ }=\sqrt{v_{1}^{2}} \\
& \sqrt{v_{2}^{2}-2 a d}=v_{1}
\end{aligned}
\]

\section*{Homework!!!}

Key concepts:
- physics
- scientific inquiry
- observation
- qualitative
- quantitative
- metric
- precision
- accuracy
- CIS SIGNED
- Safety Forms
- Lab Fee
- make sure you understand all key concepts
- WS\#1
- Worksheet 0.1
- Worksheet 0.2```

