SPH3U – UNIT 1 KINEMATICS

Comparing Graphs of Linear Motion

LINEAR MOTION

dmansion

• Motion along a straight line

- Can be described mathematically using only 1 dimension. (in the x-direction, in the y-direction, North, East, etc.)
- Also called rectilinear motion (Rectilinear propogation of light in Gr. 10 optics)

POSITION-TIME GRAPH (CONSTANT VELOCITY)

 A graph describing the motion of an object, with position on the vertical axis and time on the horizontal axis

• The slope of a position-time graph gives the velocity of the object

POSITION-TIME GRAPH (UNIFORM ACCELERATION)

 Instantaneous velocity of an object is its velocity at a specific instant in time. It is equal to the slope of the tangent to the position-time graph at that instant in time

VELOCITY-TIME GRAPH

 A graph describing the motion of an object, with velocity on the vertical axis and time on the horizontal axis

- The slope of a velocity-time graph gives the average acceleration of an object
- The area under a velocity-time graph gives the displacement of the object whose motion it describes

VELOCITY-TIME GRAPH

ACCELERATION-TIME GRAPH

- A graph describing the motion of an object with acceleration on the vertical axis and time on the horizontal axis
- The area under an acceleration-time graph represents the change in velocity of an object.

RELATIONSHIPS BETWEEN LINEAR MOTION GRAPHS

 Given one type of motion graph, you can read or calculate data from it in order to construct a different type of graph

RELATIONSHIPS BETWEEN LINEAR MOTION GRAPHS

How do you determine	Given a	Read information from graph	Take the slope	Find the area
position	position-time graph	V		
velocity	position-time graph	,		
velocity	velocity-time graph			
velocity	acceleration-time graph			
acceleration	velocity-time graph	/		
acceleration	acceleration-time graph	V		

PG. 35 #3

- Consider the position-time graph shown in Figure 10.
 - (a) What is the position of the object at t = 5.0 s?
 - (b) What is the instantaneous velocity of the object at t = 3.0 s?
 - (c) What is the average velocity for the object's motion from 0 s to 6.0 s?

HOMEWORK

Pg. 30 #11 (#4-10 if you didn't complete last night) Pg. 35 #2,4

 $\overline{\mathcal{A}} = \overline{\mathcal{V}_2} - \overline{\mathcal{V}_1}$

• Read 1.5 - pages 36 - 39 $Q_{1,2}$ Q_{-} U_{-} U_{-} U_{-} U_{-}