SPH3U - Unit 1 Kinematics

Comparing Graphs of Linear Motion

Linear Motion

- Motion along a straight line
- Can be described mathematically using only 1 dimension. (in the x-direction, in the y-direction, North, East, etc.)
- Also called rectilinear motion (Rectilinear propogation of light in Gr. 10 optics)

Position-time Graph (Constant Velocity)

- A graph describing the motion of an object, with position on the vertical axis and time on the horizontal axis
- The slope of a position-time graph gives the velocity of the object

Position v. Time for a Rolling Ball

Position-Time Graph (UNIFORM AcCELERATION)

- Instantaneous velocity of an object is its velocity at a specific instant in time. It is equal to the slope of the tangent to the position-time graph at that instant in time

Position v. Time for Motion with Uniform Acceleration

Velocity-Time Graph

- A graph describing the motion of an object, with velocity on the vertical axis and time on the horizontal axis
- The slope of a velocity-time graph gives the average acceleration of an object
- The area under a velocity-time graph gives the displacement of the object whose motion it describes

VELOCITY-TIME GRAPH

ACCELERATION-TIME GRAPH

- A graph describing the motion of an object with acceleration on the vertical axis and time on the horizontal axis
- The area under an acceleration-time graph represents the change in velocity of an object.

ReLATIONSHIPS BETWEEN LINEAR MOTION GRAPHS

- Given one type of motion graph, you can read or calculate data from it in order to construct a different type of graph

ReLAtionships Between Linear motion GRAPHS

How do you determine ...	Given a ...	Read information from graph	Take the slope	Find the area
position	position-time graph	position-time graph		
velocity	velocity-time graph			
velocity	acceleration-time graph			
velocity	velocity-time graph			
acceleration	acceleration-time graph			
acceleration				

Pg. 35 \#3
3. Consider the position-time graph shown in Figure 10.
(a) What is the position of the object at $t=5.0 \mathrm{~s}$?
(b) What is the instantaneous velocity of the object at $t=3.0 \mathrm{~s}$?
(c) What is the average velocity for the object's motion from 0 s to 6.0 s ?

Position v. Time for Accelerated Motion

$$
\text { c) } \vec{v}_{\text {avg }}=\frac{\overrightarrow{\Delta d}_{\Delta t}}{}
$$

$$
=\frac{\vec{d}_{2}-\bar{d}_{1}}{t_{2}-t_{1}}
$$

$$
=\frac{65_{m}[s]-O_{m}[s]}{6 s-0 s}
$$

$$
=\frac{65 \mathrm{~m}[\mathrm{~s}]}{6 \mathrm{~s}}
$$

$$
=10.8 \mathrm{~m} / \mathrm{s}[\mathrm{~s}]
$$

$$
=11 \mathrm{~m} / \mathrm{s}[\mathrm{~s}]
$$

Homework

- Pg. 30 \#11 (\#4-10 if you didn't complete last night)
- Pg. 35 \#2,4
- Read 1.5- pages 36-39

$$
\begin{aligned}
& \left.Q u, 2-\begin{array}{c}
d-t \\
v-t
\end{array}\right) g / a p h s \\
& \vec{a}=\frac{\vec{V}_{2}-\vec{V}_{1}}{t}
\end{aligned}
$$

