UNIT #1 KINEMATICS

Projectile Motion

Pg. #2 [f] Given: V = 3.0 m/s[1] 12r =9.8m []] 8d = 12m [J] V2 = Velocity at instat it hits the water Required: $\sqrt{2}$ V, + 22 2d Hhal sis $= \left(\frac{3.0}{5}\right)^2 + 2\left(\frac{9.0}{5}\right)^2$ 12m M 2352m · \ = Zn 244.2m²/2 = 15.6 m/s

Projectiles

any object upon which the only force is gravity

horizontal and vertical motion are INDEPENDENT

Vertical	Horizontal
 acceleration due to gravity use the "big 5" equations 	 no horizontal forces acting on projectile, so NO horizontal acceleration (uniform motion v=d/t)

HW $Ad = \frac{1}{2}aAt^2$ Pg.43 $-40m = \frac{1}{2} \left(-9.9m + 5\right) \text{ at}$ *45 -40m = -4.9m (st)Pg. 34 $\Delta t^{2} = -40 \text{ M}_{-4.9} \text{ M}_{/2}^{2}$ practice #1,2 $At = 8.16 s^{2}$ $\Delta t = \sqrt{8.16s^2}$ $\Delta t = 2.86s \rightarrow \text{keep } 3.519$ digsHorizontal: V=200 m/s (->) + t = 2.86s $v = d/_{1} := d = vt$ $= 200 \text{ m} [\rightarrow] (2.8\text{ m})$ $= 570 \text{ m} [\rightarrow]$

a)Find the horizontal distance travelled by the projectile shown.

b)Find the impact velocity

A plane flying horizontally at 75 m/s drops a supply box when it is directly over a tower 250m below.

- a) How far from the tower does the box land?
- b) What is its velocity when it hits the ground?