UNIT \#1 KINEMATICS

Projectile Motion

Required: $\vec{v}_{2}=$ velocity at instant it hits the water

$$
\begin{aligned}
& \text { Analysis: } \\
& \vec{v}_{2}^{2}=\vec{v}_{1}^{2}+2 \vec{a} \vec{\Delta} d \\
& \left.=\left(3.0 \frac{m}{s}\right)^{2}+2\left(\frac{98 \mathrm{~m}}{\mathrm{~s}^{2}}\right)^{12 \mathrm{~m}}\right) \\
& v_{2}^{2}=9 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}+235.2 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \\
& \left.\therefore V_{2}=16 \frac{m}{s} \downarrow\right] V_{2}^{2}=244 . \frac{2 \mathrm{~m}^{2}}{\mathrm{~s}^{2}} \\
& \begin{array}{c}
\vec{V}_{2}=\sqrt{244.2 \mathrm{~m}^{2} / \mathrm{s}^{2}}
\end{array}
\end{aligned}
$$

Projectiles

\square any object upon which the only force is gravity
\square horizontal and vertical motion are INDEPENDENT

Vertical

-acceleration due to gravity
-use the "big 5" equations

Horizontal

-no horizontal forces acting on projectile, so...

- NO horizontal acceleration (uniform motion $v=d / t$)
time

Example \#1

Find the horizontal distance travelled by the projectile shown.

Analysis: $\begin{array}{r}\vec{d} t=\vec{V}_{1} \Delta t+1 / 2 \vec{a} \Delta t^{2} \\ \text { Quadratic) -unless } v=0\end{array}$

HORIZONTAL
$d_{h}=$
$v_{h}=200 \mathrm{~m} / \mathrm{s}$
$\mathrm{t}=2.86 \mathrm{~s}$

Steps $V_{1}=0$
$\vec{\Delta} d=v_{ر} \Delta t+y_{2} a \Delta t^{2}$

$$
\begin{aligned}
& \overline{\Delta d}=1 / 2 a \Delta t^{2} \\
& -40 \mathrm{~m}=\frac{1}{2}\left(-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \Delta t^{2} \\
& -40 \mathrm{~m}=-4.9 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}(\Delta t)^{2} \\
& \Delta t^{2}=\frac{-40 \mathrm{~m}}{-4.9 \mathrm{~m} / \mathrm{s}^{2}} \\
& \Delta t^{2}=8.16 \mathrm{~s}^{2} \\
& \Delta t=\sqrt{8.16 \mathrm{~s}^{2}} \\
& \Delta t=2.86 \mathrm{~s}
\end{aligned}
$$

$$
\Delta t=\sqrt{8.16 \mathrm{~s}^{2}} 2.86 \mathrm{~s} \rightarrow \text { keep } 3 \mathrm{~s} \text { sig }
$$

Horizontal: $V=200 \mathrm{~m} / \mathrm{s}[\rightarrow]+$

$$
\begin{aligned}
t & =2.86 \mathrm{~s} \\
v=d / t \quad \therefore d & =v t \\
& =200 \frac{\mathrm{~m}}{8}[\rightarrow](2.86 \mathrm{~s}) \\
d & =570 \mathrm{~m}[\rightarrow]
\end{aligned}
$$

Example \#2

a)Find the horizontal distance travelled by the projectile shown.

b)Find the impact velocity

Example \#3

A plane flying horizontally at $75 \mathrm{~m} / \mathrm{s}$ drops a supply box when it is directly over a tower 250m below.
a) How far from the tower does the box land?
b) What is its velocity when it hits the ground?

