FRICTION

FRICTION

* a force between two surfaces that opposes motion
+ acts opposite the direction of motion static-object is stationary (trying to move)
* kinetic - object is moving
F_{f} does not depend on velocity or surface area

COEFFICIENT OF FRICTION

* Coefficient of Friction - the ratio of the magnitude of the force of friction between 2 surfaces to the magnitude of the normal force between the surfaces

$$
\mu=\frac{F_{f}}{F_{N}}
$$

$m n$

NORMAL FORCE

* Equal to the weight of the object
$\times F_{N}=m g$

$$
\Rightarrow g=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

FRICTION

$F_{f}=\mu F_{N}$

$F_{f}=$ force of friction (N) $\mu=$ coefficient of friction $F_{N}=$ normal force (N)

COEFFICIENT OF STATIC FRICTION

x static - stationary (not moving)

* Coefficient of Static Friction:
+ the ratio of the magnitude of the maximum force of static friction to the magnitude of the normal force

$$
\mu_{s}=\frac{F_{s}}{F_{N}}
$$

COEFFICIENT OF KINETIC FRICTION

* kinetic - moving
* Coefficient of Kinetic Friction:
+ the ratio of the magnitude of the force of kinetic friction to the magnitude of the normal force

$$
\mu_{k}=\frac{F_{k}}{F_{N}}
$$

WHERE DO YOU WANT

 FRICTION...* as low as possible?

as high as possible?

EXAMPLE \#1

In the horizontal starting area for a bobsled race, 4 athletes, with a combined mass of 295 kg , need a horizontal force of 41 N [forward] to get the 315 kg sled moving. Calculate the coefficient of static friction.

$$
F_{S}=41 \mathrm{~N} F_{\omega} F_{A}=41 \mathrm{~N}
$$

$$
\begin{aligned}
& F_{s}=41 \mathrm{~N} \\
& F_{N}=? \rightarrow \mathrm{mg} \\
& M_{s}=?
\end{aligned}
$$

Given:

$$
\begin{aligned}
& F_{s}=41 \mathrm{~N} \\
& m=315 \mathrm{~kg}
\end{aligned}
$$

Required: μ_{s}
Analysis: $F_{N}=m g$

$$
\mu_{s}=\frac{F_{s}}{F_{N}}
$$

Steps: $F_{N}=(315 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

$$
\begin{aligned}
& F_{W}=3087 \mathrm{~N} \\
& \mu_{s}=\frac{41 \mathrm{~N}}{3087 \mathrm{~N}} \\
& \mu_{s}=0.013
\end{aligned}
$$

EXAMPLE \#?

* A truck's brakes are applied so hard that the truck goes into a skid on a dry asphalt road. The truck and its contents have a mass of $4.2 \times 10^{3} \mathrm{~kg}$, calculate the force of kinetic friction on the truck.

Giver. $m=4.2 \times 10$
$\mu_{k}=\frac{F_{k}}{F_{N}}$

$$
F_{k}=\mu_{k} F_{N}
$$

$$
\begin{aligned}
F_{N} & =m g \\
& =\left(4.2 \times 10^{3} \mathrm{~kg}\right)\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \\
F_{N} & =41160 \mathrm{~N} \\
F_{k} & =\mu_{k} F_{N} \\
& =0.65(41160 \mathrm{~N}) \\
F_{k} & =26754 \mathrm{~N} \\
\therefore F_{k} & =27000 \mathrm{~N}
\end{aligned}
$$

EXAMPLE \#3

A loaded 4-man bobsled with a mass of 615 kg experiences a frictional force of 66 N as it slides down the track. Calculate the coefficient of friction.

HOMEWORK

$$
\begin{aligned}
& P_{5} 171 \# 1-3 \\
& P_{g} 172 \# 5-7
\end{aligned}
$$

