WORK, ENERGY, AND POWER SPH3U

## Mechanical work (W)

- applying a force on an object that displaces the object in the direction of the force or a component of the force

$$
W=F_{\Delta d}
$$

- when describing work mention the object that does the work and the object that work is done on


## UNITS OF WORK

$$
W=F \Delta d
$$

$$
\mid J=1 N \cdot 1 m
$$

- Force - N
- distance - m
- N x m = Nm
- 1 Nm = 1 Joule
- Joule - J
- the amount of energy required to accelerate an object of mass 1 kg by $1 \mathrm{~m} / \mathrm{s}^{2}$ over a distance of 1 m

WORK DONE (FORCE AND DISPLACEMENT IN SAME DIRECTION)

- A curler applies a force of 15.0 N on curling stone and accelerates the stone from rest to a speed of $8.00 \mathrm{~m} / \mathrm{s}$ in 3.50 s . Assume friction to be negligible. How much work does the curler do on the stone?
Given:

$$
\begin{aligned}
& F=15.0 \mathrm{~N} \\
& v_{1}=0 \mathrm{~m} / \mathrm{s} \\
& V_{2}=8.00 \mathrm{~m} / \mathrm{s} \\
& \Delta t=3.50 \mathrm{~s}
\end{aligned}
$$

Required:
$\omega=$ Work

$$
W=F \Delta d
$$

$$
\left.\begin{array}{rl}
\text { Steps: } \Delta d & =\left(\frac{(8 \mathrm{~m}}{\mathrm{s}}+0 \mathrm{~m} / \mathrm{s}\right)
\end{array}\right) 3.50 \mathrm{~s} \mathrm{~s} .
$$

## WORK DONE (FORCE AND DISPLACEMENT DIFFERENT DIRECTIONS)

- an object may experience a force in one direction but move in a different direction

$$
\cos 90^{\circ}=0
$$

- the work done by a force is zero when the force's direction is perpendicular to the object's displacement

$$
W=F(\cos \theta) \Delta d
$$



Work Done (Force and displacement in DIFFERENT DIRECTIONS)

- A person cutting a flat lawn pushes a lawnmower with a force of 125 N at an angle of $40.0^{\circ}$ below the horizontal for 12.0 m . Determine the mechanical work done by the person on the lawnmower.

Giver: $F=125 \mathrm{~N}$

$$
\begin{aligned}
\Delta d & =12.0 \mathrm{~m} \\
\theta & =40.0^{\circ}
\end{aligned}
$$

Required

$$
\begin{aligned}
& W=W \operatorname{cosk} \\
& W=F(\cos \theta) \Delta d \\
& W=(1250)\left(\cos 40^{\circ}\right)(2 \mathrm{~mm}) \\
& W=1149 \mathrm{Nm} \\
& W=1150 \mathrm{~J}
\end{aligned}
$$

$$
\text { Analysis } W=F(\cos \theta) \Delta d
$$

## Positive and negative work

- Objects can experience several forces at the same time.
- Total work done is equal to the algebraic sum of the work done by all of the forces acting on the object


## Positive and Negative work

- Adam pushes a bowl of cereal along a level counter a distance of 1.3 m . What is the net work done on the bowl if Adam pushes the bowl with a force of 4.5 N and the force of friction between the bowl and the counter is 2.8 N ?

Questions
Pg. 229 \#1-5, 7, 11
Read pqs 222-228

