WORK, ENERGY, AND POWER SPH3U – Unit 3 Day 2 Energy

SOME USEFUL DEFINITIONS

Energy

• the capacity (ability) to do work

• Kinetic Energy (E_K)

energy possessed by moving objects

• Work – Energy Principle

 the net amount of mechanical work done on an object equals the objects change in kinetic energy

More Useful definitions

Potential Energy

 a form of energy an object possesses because of its position in relation to forces in the environment

Gravitational Potential Energy

 energy possessed by an object due to its position relative to the surface of the earth

Reference Level

- a designated level to which objects may fall
- Considered to have a gravitational potential energy value of 0 J
- Mechanical Energy
 - the sum of kinetic energy and gravitational potential energy

KINETIC ENERGY

- o scalar quantity
- Equation:

$$E_k = \frac{mv^2}{2}$$

$$E_k = \frac{1}{2}mv^2$$

WORK ENERGY PRINCIPLE

 The net amount of mechanical work done on an object equals the object's change in kinetic energy

$$W_{Net} = \Delta E_k$$

$$W_{Net} = E_{kf} - E_{ki}$$

$$W_{Net} = \frac{m v_f^2}{2} - \frac{m v_i^2}{2}$$

GRAVITATIONAL POTENTIAL ENERGY

 $E_g = mgh$

Pg 235 #1
Given:
$$m = 610 \text{ kg}$$

 $Ex = 40.0 \text{ kJ}$
Required: speed = $V = 3 \text{ sy digs}$
Analysis: $E_x = mv^2$ $I = INm$
 $Steps: Isolate = V$
 $E_x = mv^2$ $I = 1 \text{ kg} \text{ m}^2$
 $2 E_x = mv^2$
 $2 E_x = mv$
 $Q E_x = v^2$
 M
 $Q E_x = v^2$

$$V = \sqrt{\frac{2E_{k}}{m}}$$

= $2(40000 k_{3} \frac{m^{2}}{s^{2}})$
= $\sqrt{131.147 \frac{m^{2}}{s^{2}}}$

$$v = 11.45 m/s$$

 $v = 11 m/s$

QUESTIONS • Pg. 235 #1-3,5,6

Ps 235 #2,3,5,6 Read pg 230-235