Pg. 241
$\# 1$ a) $E_{g} \rightarrow E_{k}, E_{g} \rightarrow E_{k}$
\#4.

$$
\begin{aligned}
& F_{N L T}=m a \\
& V_{i}=Q \\
& V_{f}=? \\
& V_{f}=V_{i}+a \Delta t \\
& V_{f}^{2}=X_{i}^{\text {/ }}+2 a \Delta d
\end{aligned}
$$

a) $\therefore V_{f}^{2}=2 a \Delta d$
b)

$$
\begin{aligned}
& E_{k}=\frac{m v^{2}}{2} \\
& E_{k}=\frac{m 2 a \Delta d}{2} \\
& E_{k}=m a s d
\end{aligned}
$$

$a \Delta d$

$$
\frac{m}{s^{2}} m
$$

$$
=\frac{\lg m^{2}}{s^{2}} J
$$

$$
\begin{aligned}
g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad g & =9.8 \frac{\mathrm{~N}}{\mathrm{~kg}} \\
g & =9.8 \frac{\mathrm{~kg} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}{\mathrm{~kg}}
\end{aligned}
$$

EFFICIENCY, TYPES OF ENERGY, AND POWER

SPH3U - Unit 3

EFFICIENCY

- Efficiency:
- the amount of useful energy produced in an energy transformation expressed as a percentage of the total amount of energy used

$$
\text { efficiency }=\frac{E_{\text {out }}}{E_{\text {in }}} \times 100 \%
$$

SOURCES OF ENERGY

- Energy Resource
- energy rich substance
- Non-Renewable Energy Resource
- a substance that cannot be replenished as it is used in energytransforming processes
- Renewable Energy Resource
- a substance with an unlimited supply or a supply that can be replenished as the substance is used in energy transforming processes

NON-RENEWHBLE ENERGY RESOURCES

- Fossil Fuels
- fuel produced by the decayed and compressed remains of plants that lived hundreds of millions of years ago eg. coal, oil
- Nuclear Energy
- form of potential energy produced by interactions in the nucleus of atoms
- Nuclear fission - the decomposition of large, unstable nuclei into smaller, more stable nuclei
- Nuclear fusion - a nuclear reaction in which two atoms fuse together to form a larger nucleus

RENEWABLE ENERGY RESOURCES

- Solar Energy
- Energy from the sun
- Passive solar design - building design that uses the sun's radiant energy directly for heating
- Photovoltaic cell - a device that transforms radiant energy into electrical energy
- Hydroelectricity
- electricity produced by transforming the kinetic energy of rushing water into electrical energy

POWER

- Power (P)
- the rate of transformina eneray or doing work

$$
P=\frac{\Delta E}{\Delta t} \quad \text { or } \quad P=\frac{W_{\text {net }}}{\Delta t}
$$

UNITS OF POWER

- Power is measured in watts (James Watt)
- l watt (W) = l Joule / second
- scalar quantity

Pg. 243 Practice \#1.
Given:

$$
\begin{aligned}
& E_{I N}-5200 \mathrm{~J} \\
& m=50.0 \mathrm{~kg} \\
& \Delta d=4.0 \mathrm{~m}
\end{aligned}
$$

Required Efficiency
Analysis:

$$
\begin{aligned}
& E f f=\frac{E_{\text {out }}}{E_{w}} \times 100 \% \\
& E_{\text {out }}=E_{g}=m g h
\end{aligned}
$$

Steps $E_{\text {out }}=(50.0 \mathrm{~kg})\left(9.8 \frac{\mathrm{~g}}{\mathrm{~s}^{2}}\right)(4.0 \mathrm{~m})$

$$
\begin{aligned}
& \text { Bout }=1960 \mathrm{~J} \\
& E f f=\frac{1960 \mathrm{~J}}{5200 \mathrm{~J}} \times 100 \% \\
& E f f=38 \%
\end{aligned}
$$

Pg 251
\#2

$$
P=\frac{W_{\text {NET }}}{\Delta t}
$$

Giver $m=55 \mathrm{~kg}$

$$
\begin{aligned}
& t_{1}=9 \mathrm{am}_{\mathrm{am}}>3 \mathrm{hrs} \\
& t_{2}=12 \mathrm{Nom}
\end{aligned}
$$

$$
\begin{aligned}
& W=\Delta E_{g} \\
& W=m g \Delta h \\
& W=(55 \mathrm{~kg})\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}(155 \mathrm{~m})\right. \\
& W=835450 \mathrm{~J})
\end{aligned}
$$

$$
\begin{gathered}
P=\frac{W}{\Delta t} \quad 3 \text { hrs } \times \frac{60 \operatorname{Ain}}{1 \mathrm{hr}} \times \frac{60 \mathrm{~s}}{t_{\text {min }}} \\
\quad \Delta t=10800 \mathrm{~s} \\
P=\frac{835450 \mathrm{~J}}{10800 \mathrm{~s}} \quad P=77 \mathrm{~W}
\end{gathered}
$$

Pg. $251 \# 3$
Given: $m=60.0 \mathrm{~kg}$ Analysis

$$
\begin{array}{ll}
V_{1}=0 \mathrm{~m} / \mathrm{s} & P=\frac{W}{\Delta t} \\
V_{2}=12 \mathrm{~m} / \mathrm{s} & W=\Delta E_{k} \\
\Delta t=6.0 \mathrm{~s} & =\frac{m v_{2}^{2}}{2} \\
P_{\text {cower }}=p &
\end{array}
$$

Required: \quad Power $=P$
Steps: $W=\frac{m v_{2}^{2}}{2}$

$$
\begin{aligned}
& =(60 \mathrm{~kg})(12 \mathrm{~m} / \mathrm{s})^{2} \\
W & =4320 \mathrm{~J}
\end{aligned}
$$

$$
P=\frac{4320 \mathrm{~J}}{6.0 \mathrm{~s}}
$$

$$
p=720 \mathrm{w}
$$

QUESTIONS

- Pg. 249 \# 1-3
- Pg. 254 \#1-5

