Changes of State

Pg. $287 \# 6$
QReleased $+Q_{\text {nbsabod }}=0$
QReleased (Gold) QAbserbed (Ethyl Alc, hol)

$$
\begin{aligned}
& m=? \\
& T_{i}=95^{\circ} \mathrm{C} \\
& T_{f}=27{ }^{\circ} \mathrm{C} \\
& c=1.29 \times 10^{2} \frac{\mathrm{~J}}{\mathrm{~kg}}{ }^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& m=500 \mathrm{ml} \\
& V=\frac{m}{V}
\end{aligned}
$$

$$
D=0.789 \mathrm{~g} / \mathrm{ml}
$$

$$
m=0.789 \frac{\mathrm{j}}{\mathrm{~mL}} \times 500 \mathrm{~m} \mathrm{~d}
$$

$$
\begin{aligned}
& m=394.5 \mathrm{~g} \\
& m=0.39 \mathrm{~kg}
\end{aligned}
$$

$$
\begin{aligned}
& m=0.39 \mathrm{~kg} \\
& T_{i}=25^{\circ} \mathrm{c}
\end{aligned}
$$

$$
T_{f}=27^{\circ} \mathrm{C}_{3}
$$

$$
c=2.46 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~kg}}{ }^{\circ} \mathrm{C}
$$

Released (gold) Absorbed

$$
\begin{aligned}
& M C D T+M C \Delta T=0 \\
& \left.\begin{array}{c}
m\left(1.29 \times 10^{2} \mathrm{~J}\right. \\
\mathrm{kg}^{\circ} \mathrm{C}
\end{array}\right)\left(\begin{array}{c}
\left.\left(27^{\circ} \mathrm{C}-95^{\circ} \mathrm{C}\right)+(0.39 \mathrm{~kg})\left(\begin{array}{c}
\left(2.46 \times 10^{3} \mathrm{~J}\right. \\
(-8772 \mathrm{~J} \\
\mathrm{kg}
\end{array}\right) m+1918.8 \mathrm{~J}\right)\left(27^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right)=0
\end{array}\right)=0
\end{aligned}
$$

$$
\begin{gathered}
-877 \frac{2 \mathrm{~J}}{\mathrm{~kg}}(m)=-1918.8 \mathrm{~J} \\
m=\frac{-1918.8 \mathrm{~J}}{-8772 \mathrm{~J} / \mathrm{kg}} \\
m=0.22 \mathrm{~kg}
\end{gathered}
$$

Thermal Expansion and Contraction

- Thermal Expansion:
- the expansion of a substance as it warms up
- Thermal Contraction:
- the contraction (shrinking) of a substance when it cools down

Heating Curve for Water

Changing states (temp doesn't change!) *all additional thermal energy is used to melt the ice

- Q: What do the flat parts of the graph indicate?
-temperature is not changing because the added thermal energy is changing the physical state of the water
-two states of matter are present
-thermal energy is used to break the bonds connecting the particles

Latent Heat
 - "Latent" - hidden
 Absorbing
 $$
Q(t)
$$
 $$
\text { Releasing } Q(-)
$$

- Absorbed thermal energy is stored in the material until the opposite change of state can release it
- "Latent heat of fusion" - the amount of thermal energy required to change a solid into a liquid (melts) or a liquid into a solid (freezes) Absorbing Releasing
- "Latent heat of vaporization" - the amount of thermal energy required to change a liquid into a gas or a gas into a liquid.
Relessing
- "Specific latent heat" - the amount of thermal energy per kilogram of a substance required for a change of state

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{mL}_{\mathrm{f}} \\
& \mathrm{Q}=\mathrm{mL}_{\mathrm{V}}
\end{aligned}
$$

EXAMPLE \#1

- p. 293 \#3
- HWK:
- Read 6.4
- P. 295 64. 6-9

$$
1,3,4,6-9
$$

Pg $293 \# 3$.
(1) Steam $100^{\circ} \mathrm{C} \rightarrow$ Water $100^{\circ} \mathrm{C}$
(2) Waten $100^{\circ} \mathrm{C} \rightarrow$ Water $50^{\circ} \mathrm{C}$

$$
\begin{aligned}
& m=500 \mathrm{~g} \quad * \begin{array}{c}
\text { Assume } \\
\\
\end{array} \\
& L_{v}=2.5 \text { sigs } \\
& c=4.18 \times 10^{6} \frac{\mathrm{Jg}}{\mathrm{~kg}} \\
& C 10^{3} \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{c}} \\
& Q_{\text {Released }}=Q L_{v}+Q_{\Delta T}
\end{aligned}
$$

(1)

$$
\begin{aligned}
Q & =m L v \\
& =(0.5 \mathrm{~kg})\left(2.3 \times 10^{6} \frac{\mathrm{~J}}{\mathrm{~kg}}\right)
\end{aligned}
$$

$$
\therefore \text { Qreleased }
$$

$$
\begin{aligned}
& 1150000 \mathrm{~J} \\
& 104500 \mathrm{~J} \\
& 1254500 \mathrm{~J}
\end{aligned}
$$

$$
\therefore 1,300,000 \mathrm{~J}
$$

(2)

$$
\begin{aligned}
Q & =m c \Delta T \\
& =(0.5 \mathrm{~kg})\left(4180 \frac{\mathrm{~J}}{k_{j}{ }^{\circ} \mathrm{C}}\right)\left(50^{\circ} \mathrm{C}-100 \mathrm{C}\right) \\
Q & =-104,500 \mathrm{~J}
\end{aligned}
$$

