$$
\begin{aligned}
& \text { Kirchoff's laws, } \\
& \text { Ohm's Law, and } \\
& \text { Circuit Analysis }
\end{aligned}
$$

Kirchoff's voltage law

- Electric potential difference is also referred to as voltage
- Kirchoff's Voltage Law:
- In any complete path in an electric circuit, the total electric potential increase at the source(s) is equal to the total electric potential decrease throughout the rest of the cicuit
- $\mathrm{V}_{\text {series }}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}+\ldots \ldots \ldots . . .$.
- $\mathrm{V}_{\text {parallel }}=\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=\ldots \ldots \ldots \ldots .$.

Kirchoff's Current Law

- In electric circuits, junctions are points where the current can split to follow more than one path
- Kirchoff's Current Law:
- In a closed circuit, the amount of current entering a junction is equal to the amount of current exiting a junction.
- $\mathrm{I}_{\text {series }}=\mathrm{I}_{1}=\mathrm{I}_{2}=\mathrm{I}_{3}=$ \qquad
- $\mathrm{I}_{\text {parallel }}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}+$ \qquad

Practice questions Pg. 522

1. For the circuit in Figure 7, $V_{\text {source }}=60.0 \mathrm{~V}, V_{1}=20.0 \mathrm{~V}$, and $V_{3}=15 \mathrm{~V}$. Determine V_{2}, V_{4}, and V_{5}. [ans: $V_{2}=25 \mathrm{~V} ; V_{4}=15 \mathrm{~V} ; V_{5}=15 \mathrm{~V}$]

Figure 7

$$
\begin{aligned}
& V_{2}=60 \mathrm{~V}-20 \mathrm{~V}-15 \mathrm{~V} \\
& V_{2}=25 \mathrm{~V}
\end{aligned}
$$

More Practice Problems Pg. 522

2. For the circuit in Figure $7, I_{1}=0.70 \mathrm{~A}, I_{3}=0.10 \mathrm{~A}$, and $I_{5}=0.20 \mathrm{~A}$. Determine $I_{\text {source }}, I_{2}$, and I_{4}. TIII [ans: $I_{\text {suure }}=0.70 \mathrm{~A} ; l_{2}=0.70 \mathrm{~A}$; $\left.I_{4}=0.40 \mathrm{~A}\right]$

$$
\begin{aligned}
& I_{4}=0.7-(0.1+0.2) \\
& I_{4}=0.40 \mathrm{~A}
\end{aligned}
$$

Electrical resistance

- Electrical resistance (R):
- a property of matter that describes how difficult it is for electric current to travel through a material
- Resistor
- an electrical device that has a specific resistance value

Ohm's law

- The voltage in a conductor is proportional to the current if the temperature remains constant.

Ohm's Law

- R
- resistance measured in volts per ampere (ohms)
- V
" voltage measured in volts (V)
- I
" electric current measured in amperes or amps (A)

Measuring resistance

- Ohmmeter
" a device that measures electrical resistance
- connected in parallel and must never be used on a live circuit

Resistors in circuits

- Resistors in Series
- substitute Ohm's Law into KVL
- generates an equivalent resistance
- $\mathrm{R}_{\text {series }}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\ldots$

Resistors in circuits

- Resistors in parallel
- Substitute Ohm's Law (isolate I) into KCL
- generate an equivalent resistance
- Equation: $\frac{1}{R_{\text {parallel }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots$

Example \#1

- Determine the equivalent resistance for a 25.2 ohm resistor connected in series with a 28.12 ohm resistor.

$$
\begin{aligned}
R_{T}= & 25.2 \Omega+28.12 \Omega \\
& \begin{aligned}
& 25.2 \\
& \frac{28.12}{53.32} \\
& R T=53.3 \Omega
\end{aligned}
\end{aligned}
$$

Example \#2

- Determine the equivalent resistance of a 120 ohm resistor connected in parallel with a 60 ohm resistor.

$$
\begin{aligned}
& \frac{1}{\text { Req }}=\frac{1}{120 \Omega}+\frac{1}{60 \Omega} \\
&=\frac{1}{120 \Omega}+\frac{2}{120 \Omega} \\
& 1=\frac{3}{120 \Omega} \\
& \hat{R e q} \\
& R_{e q}=120 \Omega / 3=40 \Omega
\end{aligned}
$$

Equivalent resistance in Practice Pg 530

1. What is the total resistance of the mixed circuits shown in Figure $\mathbf{6}$? Note that each resistor has resistance 5.0Ω. [mans: (a) 17.5Ω; (b) 6.3Ω]
(a)

Figure 6

$$
\begin{aligned}
& \frac{1}{R_{e q}}=\frac{1}{5 \Omega}+\frac{1}{5 \Omega} \\
& Y_{\text {Req }}=\frac{2}{5 \Omega} \\
& R_{e q}=\frac{5 \Omega}{2}=2.5 \Omega \\
& R_{T}=5 \Omega+2.5 \Omega+5 \Omega+5 \Omega \\
& R_{T}=17.5 \Omega
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \frac{1}{R_{e_{q}}}=\frac{1}{5 \Omega}+\frac{1}{5 \Omega}+\frac{1}{5 \Omega}+\frac{1}{5 \Omega} \\
& 1 / R_{e q}=4 / 5 \Omega \\
& R_{e_{q}}=\frac{5 \Omega}{4}=1.25 \Omega \\
& R_{T}=5 \Omega+1.25 \Omega \\
& R_{T}=6.25 \Omega
\end{aligned}
$$

Work

- Read 11.7, 11.8, and 11.9
- Pg. 527 \#2
- Pg. 529 \#2
- Pg. 530 \#5

西

