Wave Speed

Determining wave speed

- Universal Wave Equation
- valid for all waves and wave types
- frequency (cycles / time) x wavelength (dist./cycles)

$$
\nu=f \lambda
$$

USING THE UNIVERSAL WAVE EQUATION (PG. 389)

1. If a wave has a frequency of 230 Hz and a wavelength of 2.3 m , what is its speed? [ans: $530 \mathrm{~m} / \mathrm{s}$]
Given

$$
\text { Required } \quad V=\text { speed }
$$

$$
\begin{array}{rlrl}
f & =230 H_{2} & & \text { Analysis } \\
& =230 \frac{1}{\mathrm{~s}} & & v=f \lambda \\
\lambda & =2.3 \mathrm{~m} & & \text { Steps } \\
v & =\text { speed } & & V=\left(230 \frac{1}{5}\right)(2.3 \mathrm{~m}) \\
& & V=530 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Using The Universal wave equation (PG. 389)
2. If a wave has a speed of $1500 \mathrm{~m} / \mathrm{s}$ and a frequency of 11 Hz , what is its wavelength?
[ans: 140 m]
Given

$$
\begin{aligned}
v & =1500 \frac{\mathrm{~m}}{\mathrm{~s}} \\
f & =11 \mathrm{H}_{2} \\
& =11 \frac{1}{\mathrm{~s}}
\end{aligned}
$$

Analysis: $v=f \lambda$

Required: $\lambda=$ wavelength

$$
\begin{aligned}
\text { Steps } \lambda & =\frac{v}{f} \\
\lambda & =\frac{1500 \frac{\mathrm{~m}}{8}}{11 \frac{1}{\mathrm{~s}}} \\
\lambda & =140 \mathrm{~m}
\end{aligned}
$$

USING THE UNIVERSAL WAVE EQUATION
(PG. 389)
3. If a wave has a speed of $405 \mathrm{~m} / \mathrm{s}$ and a wavelength of 2.0 m , what is its frequency? [ans: $2.0 \times 10^{2} \mathrm{~Hz}$]

Given: $v=405 \mathrm{~m} / \mathrm{s}$
Steps: $f=\frac{v}{\lambda}$

$$
\lambda=2.0 \mathrm{~m}
$$

Required:

$$
f=\text { frequency }^{\prime}
$$

Analysis

$$
v=f \lambda
$$

$$
f=\frac{405 \mathrm{p} / \mathrm{s}}{2.0 \mathrm{~m}}
$$

$$
f=202(1 / 5)
$$

$$
f=2.0 \times 10^{2} \mathrm{H}_{2}
$$

FACTORS THAT AFFECT WAVE SPEED

- More rigid intermolecular forces allow for a faster transfer of energy, and therefore a higher wave speed in a medium
- Waves travel faster in hotter gases than in cooler gases because of the increased molecular motion caused by the higher temperature in a hotter gas

LINEAR DENSITY AND TENSION (STRINGS)

- A string's linear density, (mass per unit distance) determines how much force it will take to make the string vibrate

$$
\mu=\frac{m}{L}
$$

- m is the mass of the string in kilograms
$\circ \mathrm{L}$ is the length of the string in metres

LINEAR DENSITY AND TENSION

- Another variable affecting wave speed is tension. A loose string will absorb energy, a taut (tight) string will transmit energy very effectively

$$
v=\sqrt{\frac{F_{T}}{\mu}}
$$

- F_{T} is the tension in the string (N)
$\circ \mu$ is the linear density (kg / m)

Determining String properties (pg. 391)

1. If a 2.5 m long string on the same wave machine has a tension of 240 N , and the wave speed is $300 \mathrm{~m} / \mathrm{s}$, what is the mass of the string? [m] [ans: $6.7 \times 10^{-3} \mathrm{~kg}$]

Given

$$
\begin{aligned}
& L^{2}=2.5 \mathrm{~m} \\
& F_{T}=240 \mathrm{~N} \\
& V=300 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Required $m=m a s s$
Analysis $M=\frac{m}{L}$

$$
V=\sqrt{\frac{F_{T}}{M}}
$$

(1) determine M
(2) determine m

Steps $V=\sqrt{\frac{F_{T}}{M}}$

$$
v^{2}=\frac{F_{T}}{M}
$$

$$
M=\frac{F_{T}}{V^{2}}
$$

$$
\begin{aligned}
M & =\frac{240 \mathrm{~N}}{\left(300 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}} \\
& =\frac{240 \frac{\mathrm{~kg} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}{90000 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}}}{\mu}
\end{aligned}
$$

Determining String properties (pg. 391)
2. If a wave machine string has a linear density of $0.2 \mathrm{~kg} / \mathrm{m}$ and a wave speed of $200 \mathrm{~m} / \mathrm{s}$, what tension is required? [ans: $8 \times 10^{3} \mathrm{~N}$]

Given

$$
\begin{aligned}
& \mu=0.2 \mathrm{~kg} / \mathrm{m} \\
& V=200 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Steps

$$
\begin{aligned}
v & =\sqrt{F_{t} / \mu} \\
v^{2} & =\frac{F_{T}}{\mu} \\
F_{T} & =v^{2} \mu
\end{aligned}
$$

Required $F_{T}=$ tension
Analysis: $v=\sqrt{F_{T} / \mu}$

$$
F_{T}=\left(200 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} 0.2 \frac{\mathrm{~kg}}{\mathrm{~m}}
$$

$F_{T}=\left(40000 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}\left(\begin{array}{c}\mathrm{m} \\ (0,2 \mathrm{~kg} \\ \frac{\mathrm{m}}{}\end{array}\right)\right.$

$$
F_{T}=8000 \frac{\mathrm{mkg}}{\mathrm{~s}^{2}}
$$

$$
F_{+}=8 \times 10^{3 \mathrm{~S}^{2}} \mathrm{~N}
$$

Determining String properties (PG. 391)
3. If a string on a wave machine has a linear density of $0.011 \mathrm{~kg} / \mathrm{m}$ and a tension of 250 N , what is the wave speed? [ans: $1.5 \times 10^{2} \mathrm{~m} / \mathrm{s}$]

Given

$$
\begin{aligned}
\mu & =0.011 \frac{\mathrm{~kg}}{\mathrm{~m}} \\
F_{T} & =250 \mathrm{~N} \\
& =250 \frac{\mathrm{~kg}}{\frac{\mathrm{~m}}{\mathrm{~s}^{2}}}
\end{aligned}
$$

Required; $V=$ speed
Analysis: $v=\sqrt{F_{T} / u}$

$$
\frac{\text { Steps: }}{V=\sqrt{\frac{250 k \mathrm{~km} / \mathrm{s}^{2}}{0.011 \frac{\mathrm{~kg}}{\mathrm{~m}}}}}
$$

$$
v=\sqrt{22727 \frac{m^{2}}{s^{2}}}
$$

$$
V=150 \mathrm{~m} / \mathrm{s}
$$

Work

- Pg. 391 \#1-3, 4ab, 5-7
- Read 8.5 pgs. 392-397

