## Position Time Graphs -Displacement ${ }^{8}$

In the position vs. time graphs below, all the times are in seconds (s), and all the positions are in meters ( m ). Rank these graphs on the basis of which graph indicates the greatest displacement from beginning to end of motion. Give the highest rank to the ones) with the greatest displacement, and give the lowest rank to the ones) indicating the least displacement. If two graphs indicate the same displacement, give them the same rank. Note: Zero is greater than negative, and ties are possible.


D


Greatest


3ABF 4 L— 5
6 $\qquad$

$$
\begin{aligned}
\overrightarrow{\Delta d} & =d_{2} d \\
& =0-30 \\
& =-30
\end{aligned}
$$



Or, none of these graphs indicate any displacement at all. $\qquad$
Or, all of the displacements are the same. $\qquad$

How sure were you of your ranking? (Circle one)
Basically Guessed
$\qquad$
${ }^{8}$ K. W. Nicholson
Very Sure

Sure
45

6

|  | Very Sure |
| :--- | :---: |
| 7 | 8 |

9


## Position Time Graphs-Average Speed ${ }^{10}$

In the position vs. time graphs below, all the times are in seconds (s), and all the positions are in meters ( m ). Rank these graphs on the basis of which graph indicates the greatest average speed, where the average speed is calculated from the beginning to the end of motion. Give the highest rank to the one(s) with the greatest average speed, and give the lowest rank to the one(s) indicating the least average speed.


Or, none of these are moving at all. $\qquad$
Or, the average speed is the same for all of these. $\qquad$
Please carefully explain your reasoning.

How sure were you of your ranking? (circle one)
Basically Guessed
Sure
Very Sure
$\qquad$

[^0]Pg. $30_{\mathrm{N}} \neq 9$.

North is positive


Giver:

$$
\begin{align*}
& \vec{a}=2.90 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~s}]  \tag{t}\\
& \vec{a}=-2.90 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~N}] \\
& t=5.72 \mathrm{~s} \\
& \vec{v}_{2}=0 \mathrm{~m} / \mathrm{s}
\end{align*}
$$

Required: $\vec{V}_{1}$ (initial rebcity)
Analysis: $\vec{a}=\frac{\vec{V}_{2}-\vec{v}_{1}}{t}$
Steps: Isolate $\vec{v}$.

$$
\begin{aligned}
& \vec{a} t=\vec{v}_{2}-\vec{v}_{1} \\
& \vec{v}_{1}=\vec{v}_{2}-\vec{a}_{a} t
\end{aligned}
$$

$$
\begin{aligned}
& \vec{a} t=\vec{v}_{2}-\vec{V}_{1} \\
& \vec{a} t-\vec{v}_{2}=\overrightarrow{v_{2}}-\overrightarrow{V_{2}}-\overrightarrow{v_{1}} \\
& \frac{\vec{a}^{a t-\vec{v}_{2}}}{-1}=\frac{-\vec{v}_{1}}{-1} \\
& -\vec{a} t+v_{2}=\vec{v}_{1} \\
& \vec{v}_{2}-a+\quad>v_{1} \\
& 0 \mathrm{~m} / \mathrm{s}-\left(-2.90 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)[\mathrm{N}](5.72 \mathrm{~s})=V_{1} \\
& 0 \mathrm{~m} / \mathrm{s}+\left(2.90 \frac{\mathrm{~m}}{\mathrm{~s}^{z}}\right)[\mathrm{N}](5.72 \mathrm{~s}) \vec{v}_{1} \\
& \mathrm{~m} / \mathrm{s}+16.58 \mathrm{~g} \mathrm{~m} / \mathrm{s}[\mathrm{~N}]=\mathrm{v} \\
& \therefore \vec{v}_{1}=16.6 \mathrm{~m} / \mathrm{s}[N]
\end{aligned}
$$

$\operatorname{Pg} .30 \# 5$.

$$
\begin{aligned}
& v_{1}=10 \mathrm{~m} / \mathrm{s}[\mathrm{~N}] \\
& v_{2}=10 \mathrm{~m} / \mathrm{s}[\mathrm{~s}]
\end{aligned}
$$

constart speed?

$$
\begin{aligned}
\overline{\bar{a}} & =\frac{v_{2}-v_{1}}{\Delta t} \\
& =10 \mathrm{~m} / \mathrm{s}[s]-10 \mathrm{~m} / \mathrm{s}[\mathrm{~N}] \\
& =10 \mathrm{~m} / \mathrm{s}[\mathrm{~s}]-(-10 \mathrm{~m} / \mathrm{s}][\mathrm{s}] \\
& =20 \mathrm{~m} / \mathrm{s}[\mathrm{~s}]
\end{aligned}
$$

Pg. $30 \neq 8$ Given:

$$
\begin{aligned}
& \overrightarrow{\vec{a}}=0.53 \mathrm{~m} / \mathrm{s}^{2} \\
& \vec{v}_{1}=0.68 \frac{\mathrm{~m}}{\mathrm{~s}}[\mathrm{~N}] \\
& \vec{v}_{2}=0.89 \frac{\mathrm{~m}}{\mathrm{~s}}[\mathrm{~N}]
\end{aligned}
$$

Required. time $=t$
Analysis: $\vec{a}=\frac{\vec{V}_{2}-\vec{V}_{1}}{t}$
Steps: Isolate $t$

$$
t=\frac{t=\frac{\vec{V}_{2}-\vec{V}_{1}}{\vec{a}^{2}}}{0.59 \mathrm{~m} / \mathrm{m} / \mathrm{s}]-0.68 \mathrm{~m} / \mathrm{N}]}
$$

$$
\begin{aligned}
& t=\frac{0.21 \times \mathrm{m} 1 \%[\mathrm{~N}]}{0.53 \frac{\mathrm{~m}}{\mathrm{~s}^{7}}[\mathrm{~N}]} \\
& t=\frac{0.21}{0.53 \frac{1}{\mathrm{~s}}} \\
& t=\frac{0.396}{\frac{1}{\mathrm{~s}}} \\
& t=0.396 \mathrm{~s} \\
& t=0.40 \mathrm{~s}
\end{aligned}
$$

Read pos. 31-35
care fully go over
examples.


[^0]:    ${ }^{10}$ K. W. Nicholson

