PROPERTIES OF SOUND WAVES

CATEGORIES OF SOUND WAVES

• Audible sound wave

- sound wave in the range of human hearing
- frequency of 20 Hz to 20 kHz

• Infrasonic wave

- sound wave with a frequency below 20 Hz
- earthquake waves

o Ultrasonic wave

- sound wave with a frequency above 20 kHz
- ultrasound machines

THE SPEED OF SOUND

- Speed of sound through air depends on the temperature and density of the air
- Value increases by 0.606 m/s for every increase of 1^0 C

$$v = 331.4m / s + (0.606 / m / s / ^0 C)T$$

• where T is the temperature in degrees Celsius

PG. 393 PRACTICE #1

 If the temperature of the air in your region is 32 °C, what is the speed of sound in air at that temperature? [ans: 351 m/s]

(51ven [= 32°C Kegd VSound $P_{n} = \frac{1}{331.4} = \frac{331.4}{515} = \frac{1}{2000} = \frac{1}{1000} = \frac{1}$ V = 331.4 m/s t (0.60 m/s) 32° /V = 331.4 m/s + 19.392 m/s V = 350.792 m/s $V = 350 \text{ m/s} \rightarrow 2513 \text{ digs}$

PG. 393 PRACTICE #2

2. If the speed of sound near you is 333 m/s, what is the ambient temperature? [ans: 2.64 °C]

Given
$$V = 333 n/s$$

Required $T = temperature$
Analysis $V = 331.4 m/s + (0.606 m) T$
Steps: $333m = 331.4 m + 0.606 m T$
 $333m - 331.4m = 0.606 m T$
 $1.6m = 0.606 m T$
 $3.64m = T$
 $3.64m = T$

MACH NUMBER

• Mach number (M)

• the ratio of the airspeed of an object to the local speed of sound

$$M = \frac{airspeed}{speedofsound}$$

Remember ratios have no units !!!! Sonic booms

PG. 394 PRACTICE #1

 If the local speed of sound is 344 m/s and an aircraft is flying at 910 km/h, what is the Mach number? [200 [ans: 0.73]

Given:
$$V_s = 344 \text{ m/s}$$

 $V = 910 \text{ km/h}$
 $Required: M = mach number M = 0.74$
Analysis: $M = \frac{V}{V_s}$
Steps: $910 \text{ km} \times \frac{1000 \text{ m}}{V_s}$ $\frac{116}{Km} \times \frac{1000}{Km} \times \frac{116}{Km}$
 $V = 253 \text{ m/s}$

```
PG. 394 PRACTICE #3
```

3. If the Mach number is 0.81 and the speed of an airplane measured by radar is 850 km/h, what is the local speed of sound in kilometres per hour? [ans: 290 m/s = 1.0×10^3 km/h]

Given:
$$M = 0.81$$

 $V = 850 \text{ km}/\text{h}$
Required: $V_s = \text{Speed of sound}$
Analysis: $M = \frac{V}{V_s}$
 $Steps: V_s = \frac{V}{M}$
 $V_s = \frac{850 \text{ km}/\text{h}}{0.81}$
 $V_s = 1.0 \times 10^3 \text{ km}$

SPEED OF SOUND IN VARIOUS MEDIA

• Speed of sound depends not only on the temperature of the medium but also on the mediums properties

Table 1	Speed	of	Sound	in	Various	Media
---------	-------	----	-------	----	---------	-------

Medium	Speed of sound (m/s)			
air (20 °C)	344			
air (0 °C)	331			
air (-20 °C)	319			
glass (Pyrex)	5170			
steel	5000			
water	1496			
wood (maple)	4110			

Sound Intensity

- Loudness depends on sound intensity
- Sound intensity
 - the amount of sound energy being transferred per unit area
 - units are watts per square metre ($W\,/\,m^2$)

• Decibel (dB)

- unit of sound level
- used to describe sound intensity

Sound safety

- Exposure to high sound levels can cause hearing damage
- Damage is not reversible
- Ministry of Labour
- Musicians
- Personal listening devices

WORK $f = 1 \quad T = \frac{1}{f}$ • Pg. 397 #2,3,9,10 Quiz tomorrow - Universal Wave Egn V=f) $M = \frac{1}{1}$ V= FT/M -Monday Take up Electricity Test.