
UNIT #1 KINEMATICS

The Big 5

Uniform Acceleration

acceleration is constant

5 Kinematic equations...much easier than graphical analysis!

itel = A Triangle + H restangle $= \underline{\Delta t(\overline{v_2} - \overline{v_1})}_{2} + \underline{\Delta t(\overline{v_1})}_{2}$ $= \underline{\Delta t(\overline{v_2} - \overline{v_1})}_{2} + \underline{2\Delta t(\overline{v_1})}_{2}$ $= \underline{st}(\overline{v_2},\overline{v_1}) + 2\underline{stv},$ $= \Delta t \left(\overline{V_2} - \overline{V}, + 2\overline{V}, \right)$ $= At(\vec{v}_2 + \vec{v}_1)$ $= (\overline{V_2} + \overline{V_1}) \Delta^{+}$ sd

Equation #2

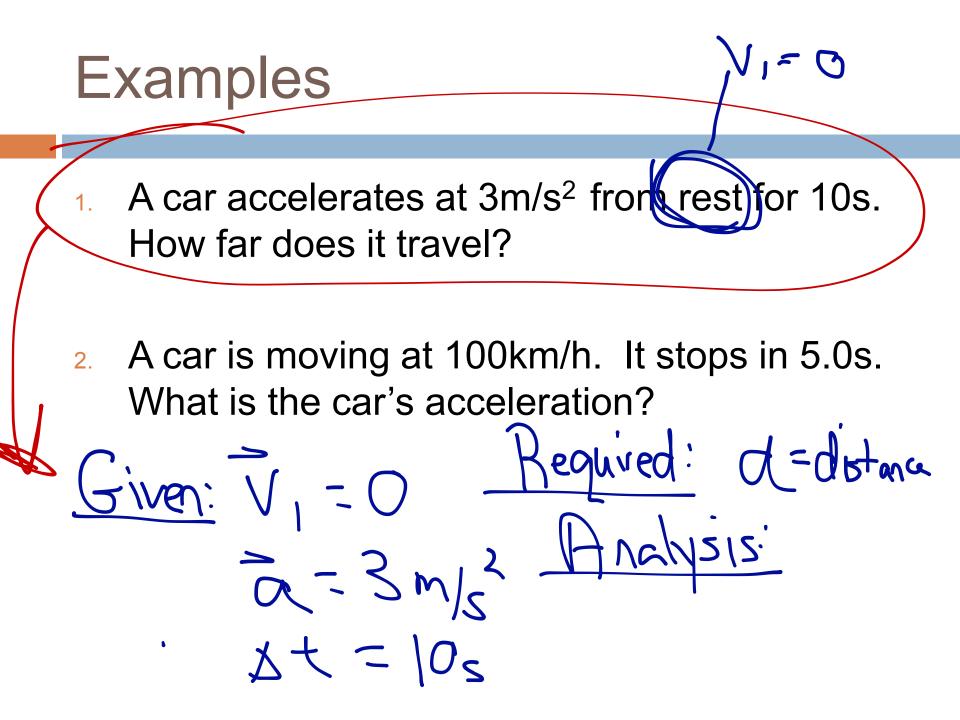
• we know that
$$\vec{a} = \frac{\vec{v}}{\Delta t}$$

• we can say, $\vec{a} = \frac{\vec{v}_2 - \vec{v}_1}{\Delta t}$

$$\overrightarrow{v_2} = \overrightarrow{v_1} + \overrightarrow{a}\Delta t$$

Equation #3

we can use equations (1) and (2) to derive equation (3)


$$\overline{\Delta d} = \begin{pmatrix} \overline{v_2} + \overline{v_1} \\ 2 \end{pmatrix} \Delta t \quad (1) \qquad \overline{v_2} = \begin{bmatrix} \overline{v_1} + \overline{a} \Delta t \\ -\overline{v_1} + \overline{a} \Delta t \end{bmatrix} \quad (2)$$

$$\overline{\Delta d} = \begin{pmatrix} \overline{v_1} + \overline{a} \Delta t + \overline{v_1} \\ 2 \end{pmatrix} \Delta t$$

$$\overrightarrow{\Delta d} = \vec{v}_1 \Delta t + \frac{1}{2} \vec{a} \Delta t^2$$

The Big Five

	Equation	Missing Variable
(1)	$\overrightarrow{\Delta d} = \left(\frac{\overrightarrow{v}_2 + \overrightarrow{v}_1}{2}\right) \Delta t$	â
(2)	$\overrightarrow{v_2} = \overrightarrow{v_1} + \overrightarrow{a}\Delta t$	Δd
(3)	$\overrightarrow{\Delta d} = \vec{v}_1 \Delta t + \frac{1}{2} \vec{a} \Delta t^2$	\vec{v}_2
(4)	$\vec{v}_2^2 = \vec{v}_1^2 + 2\vec{a}\Delta d$	Δt
(5)	$\overrightarrow{\Delta d} = \vec{v}_2 \Delta t - \frac{1}{2}\vec{a}\Delta t^2$	\vec{v}_1

Homework

□ Read 1.5

□ p.39#1-6