PRESSURE SPH4C

MEASURING GAUGE PRESSURE

- Absolute pressure
- The true pressure, or the sum of the atmospheric and gauge pressure
- $\mathrm{P}_{\text {abs }}$
- Gauge pressure
- The difference between the absolute pressure and the atmospheric pressure
- p_{g}

FORMULA

$$
\begin{gathered}
p_{g}=p_{a b s}-p_{a t m} \\
p_{a b s}=p_{g}+p_{a t m}
\end{gathered}
$$

PASCALS PRINCIPLE

- Pressure applied to an enclosed liquid is transmitted equally to every part of the liquid and walls of the container
© $\mathrm{p}_{\text {small }}=\mathrm{p}_{\text {large }}$
$\frac{F_{\text {small }}}{A_{\text {sindl }}}=\frac{F_{\text {Large }}}{A_{\text {lange }}}$

Pg. 244 \# 5.

$$
\begin{aligned}
P_{g} & =205 \mathrm{kPa} \\
P_{a}+m & =101 \mathrm{kPa} \\
P_{a b s} & =P_{g}+P_{a t m} \\
& =205 \mathrm{ka}+101 \mathrm{kPa} \\
P_{a b s} & =306 \mathrm{kPa}
\end{aligned}
$$

Pg. 249 \#4

$$
\begin{array}{ll}
F_{S}=2.2 \times 10^{3} \mathrm{~N} \\
A_{s}=0.10 \mathrm{~m}^{2}
\end{array} \quad A_{L}=2.0 \mathrm{~m}^{2}
$$

Given: $F_{s}=2.2 \times 10_{2}^{3} \mathrm{~N}$ Unknown: F_{L}
$A_{s}=0.10 \mathrm{~m}^{2}$ mass assorithed with F_{L}

$$
A_{L}=2.0 \mathrm{~m}^{2}
$$

Steps $P_{S}=P_{L}$

$$
\begin{aligned}
& \frac{F_{s}}{A_{s}}=\frac{F_{L}}{A_{L}} \\
& \frac{2200 \mathrm{~N}}{0.10 \mathrm{~m}^{2}}=\frac{F_{L}}{2.0 \mathrm{~m}^{2}} \\
& 22000 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}=\frac{F_{L}}{2.0 \mathrm{~m}^{2}} \\
& 2.0 \mathrm{~m}^{2} \times 22000 \frac{\mathrm{~N}}{\mathrm{ma}^{2}}=F_{L} \\
& 44000 \mathrm{~N}=F_{L}
\end{aligned}
$$

b) $F=m g$

$$
\begin{aligned}
& 44000 \mathrm{~N}=m\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \\
& 44000 \mathrm{~kg} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=m\left(\frac{9.8 \mathrm{~m}}{\mathrm{~s}^{2}}\right)
\end{aligned}
$$

$$
\frac{44000 \mathrm{~kg} \frac{w}{s^{2}}}{98 \mathrm{~m}}=m
$$

$$
9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

$$
m=4490 \mathrm{~kg}
$$

