$$
\text { flow rate }=q
$$

Fluids, Work, and Power SPH4C

Fluids may be used to do Work
The movement of fluid is a system is often given in terms of the

\qquad

Example: A water jet cutter needs a flow rate of $3.3 \mathrm{~L} / \mathrm{min}$ and a time of 18 s to cut a certain metal component. What is the volume of water required?

$$
\text { Given: } \begin{aligned}
q & =3.3 \mathrm{~L} / \mathrm{min} \\
t & =18 \mathrm{~s} \times \frac{\mathrm{min}}{\mathrm{bos}}=0.3 \mathrm{~min}
\end{aligned}
$$

Unknown:

$$
V_{\text {dune }}=V
$$

$$
\xrightarrow{\text { Steps: } V=q_{3.3 L}^{t} V=0.3 \mathrm{~min}}
$$

To convert litres to cubic metres, use the conversion factor:

$$
\begin{gathered}
1 \mathrm{~cm}=1 \mathrm{LL} \\
0.01 \mathrm{~m} \times 0.01 \mathrm{~m} \times 0.01_{\mathrm{m}}=0.001 \mathrm{~L} \\
0.000001 \mathrm{~m}^{3}=0.001 \mathrm{~L} \\
\text { Example: } \\
\therefore \frac{0.001 \mathrm{~L}}{0.000001}=1 \mathrm{~m}^{3} \\
\quad 1000 \mathrm{~L}=1 \mathrm{~m}^{3}
\end{gathered}
$$

The speed of the fluid may be determined by:
Flowrate : Area

If the volume is a cylinder, the area is: \qquad

Example: If the radius of the water jet cutter is 0.34 mm , what is the speed of the water?

$$
q=3.3 L / \mathrm{m}_{31}
$$

$$
0.34 \mathrm{~mm} \div 1000=0.00034 \mathrm{~m}
$$

Convert: L / min into $\mathrm{m}^{3} / \mathrm{s}$

$$
A=\pi r^{2}
$$

$$
3.3 \frac{\mathrm{t}}{7 \mathrm{~min}} \times \frac{1 \mathrm{~m}^{3}}{1000 \mathrm{t}} \times \frac{1 \mathrm{~min}}{60 \mathrm{~s}}
$$

$$
\begin{aligned}
& =\pi r^{2} \\
& =3.14(0.00034 \mathrm{~m})^{2} \\
& =3.14\left(1.156 \times 10^{-7} \mathrm{~m}^{2}\right)
\end{aligned}
$$

$3.3 \mathrm{~L} / \mathrm{min}=5.5 \times 10^{-5} \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$

$$
A=3.63 \times 10^{-7} \mathrm{~m}^{2}
$$

$$
q=5.5 \times 10^{-5} \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

The equations for pressure, work, and power are, as before:

$$
S=\frac{q}{A}=\frac{5.5 \times 10^{-5} \frac{\mathrm{~m}^{3}}{\mathrm{~s}}}{3.63 \times 10^{-7} \mathrm{~m}^{2}}
$$

$$
\begin{aligned}
\mathrm{p}=F / A & & \frac{A}{3.63 \times 10^{-7} \mathrm{~m}^{2}} \\
\mathrm{w}=\mathrm{Fd} & & =\frac{5.5}{3.13} \times 100^{2} \frac{\mathrm{~m}}{\mathrm{~s}} \\
\mathrm{p}=\mathrm{W} / \Delta t & & =1.5 \times 10^{2} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Example: If the water jet cutter exerts a force of 120 N , what is (a) the pressure and (b) the power of the water jet?
a) p

$=\frac{120 \mathrm{~N}}{3.63 \times 10^{-7} \mathrm{~m}^{2}}$
$P=357142857 \mathrm{~Pa}$

$$
P=357142 \mathrm{kPa}
$$

More Practice: Liquid in a cylinder exerts a pressure of 10000 kPa on a piston of radius 8.0 cm . The piston moves 34 cm in 6.8 s . Calculate the:
(a) force on the piston

$$
F=P \times A
$$

(b) work done on the piston

$$
W=F d
$$

(c) power of the system

$$
P=\frac{\omega}{t}
$$

