UNIT \#1 MOTION

Acceleration

Acceleration

\square acceleration = how quickly an object's velocity changes over time

$$
\vec{a}=\frac{\Delta \vec{v}}{\Delta t}
$$

$=$ the rate of change of velocity
ex: What is the average acceleration
a - no direction of a person who increases his Sperry from 0 to $25 \mathrm{~m} / \mathrm{s}$ in 10s?

$$
\vec{a}=\frac{\overrightarrow{\Delta V}}{\Delta t}
$$

$$
a=\frac{\Delta v}{\Delta t}
$$

Given:

$$
\begin{aligned}
& \Delta t=10 \mathrm{~s} \\
& V_{i}=0 \mathrm{~m} / \mathrm{s} \\
& v_{f}=25 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Unknown): acceleration =a
Steps:

$$
\begin{aligned}
a & =\frac{\Delta V}{\Delta t} \\
& =\frac{V_{f}-V_{i}}{\Delta t} \\
& =\frac{25 \mathrm{~m} / \mathrm{s}-0 \mathrm{~m} / \mathrm{s}}{10 \mathrm{~s}} \\
& =\frac{25 \mathrm{~m} / \mathrm{s}}{10 \mathrm{~s}} \\
a & =2.5 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Velocity-Time Graphs

The velocity time graph of an object that is speeding up.

Velocity-Time Graphs

The velocity time graph of an object that is

slowing down

Velocity-Time Graph

The velocity time graph of an object that is moving at constant speed.

Classwork / HW

-Pg. 22 \# 3-8

