UNIT \#3 - MOTION

Speed and Velocity

REVIEW - DISTANCE

- distance-the total path length travelled by an object
- (m)
- SCALAR
- example: If you walk

2 m from your locker to your biology class
2 m from biology class to the washroom
7 m from the washroom to your physics class
llm

- You have travelled a distance of 1 lm .

REVIEW - POSITION

- position-the distance and direction of an object from a reference point.
- VECTOR
- d
- example : the brick is 5 m to the right of it's starting point.

REVIEW DISPLACEMENT

- displacement-the change in position of an object
- VECTOR
- $\Delta \mathrm{d}$
- example l: the brick was displaced 5 m to the right

LINEAR MOTION

- Motion along a straight line
- Can be described mathematically using only l dimension. (in the x-direction, in the y-direction, North, East, etc.)
- Also called rectilinear motion (Rectilinear propogation of light in Gr. 10 optics)

POSITION-TIME GRAPH (CONSTANT VELOCITY)

- A graph describing the motion of an object, with position on the vertical axis and time on the horizontal axis
- The slope of a position-time graph gives the velocity of the object

POSITION-TIME

POSITION-TIME

SPPRD

- average speed $=$ total distance (m / s) total time
- SCALAR quantity (has ONLY magnitude)
- Example: speedometer
- Average speed is the total distance travelled divided by the total time of travel

INSTANTANEOUS SPEED

- Instantaneous speed is the speed at a particular instant in time

AVERAGE VELOCITY

- The change of position divided by the time interval
- Vector quantity
- average velocity = total displacement (m/s) total time
- VECTOR quantity (has magnitude and direction)
- V

INSTANTANEOUS VELOCITY

- The velocity at a particular instant
- The rate of change of position
- Vector quantity

VELOCITY-TIME GRAPH

- A graph describing the motion of an object, with velocity on the vertical axis and time on the horizontal axis
- The slope of a velocity-time graph gives the average acceleration of an object
- The area under a velocity-time graph gives the displacement of the object whose motion it describes

VELOCITY-TIME GRAPH

$$
\begin{aligned}
& \text { Velocity v. Time for a Complex Motion } \\
& A=\frac{(5 i)(10 \mathrm{~m}[5]]^{1(s)}}{2} \quad A=l w \\
& A=25 \mathrm{~m}^{2}[\mathrm{~s}] \\
& =(5, s)\left(10 \frac{m}{s}[s]\right) \\
& \therefore \overline{\Delta d}=25 \mathrm{~m}[\mathrm{~s}] \quad A=5 \sigma \mathrm{~m}[s] \\
& \therefore \overrightarrow{\Delta d}=75 \mathrm{~m}[\mathrm{~s}] \overrightarrow{\Delta d}=50 \mathrm{~m}[\mathrm{~s}]
\end{aligned}
$$

HOMEWORK

- p. 13 \#8-10
- p. 15 \#11
" p. 16 \#1-3,7,8

