Acceleration Due to Gravity

SPH4C - Unit 3 Motion and Forces

Acceleration Due to Gravity

Does the mass of an object affect it's acceleration near Earth's surface ?
No, objects fall at the sane rate

Value of g

- Acceleration is a vector quantity (has direction)
- Value is $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$ [down]

Free Fall

- Free Fall
- Gravity is the only force acting on the object
- No air resistance (drag)
- Terminal Velocity
- Occurs when air resistance is present
- Force of gravity = Drag force (air resistance)
- Object stops accelerating and travels at a constant speed

Uniform Vertical Acceleration

- A ball is dropped from the top of the CN tower. Determine the velocity of the ball 2.6 seconds after it is released.

Given

$$
\begin{aligned}
& \Delta t=2.6 \mathrm{~s} \\
& \vec{a}=9 . g \mathrm{~m} / \mathrm{s}^{2}[t] \\
& \overrightarrow{v_{1}}=0 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Required $V_{2}=$ velocity at 2.6 s
Steps

$$
\vec{a}=\frac{\vec{v}_{2}-\vec{v}_{1}}{\Delta t}
$$

$$
\begin{aligned}
& -9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=\frac{V_{2}-0 \mathrm{~m} / \mathrm{s}}{2.6 \mathrm{~s}} \\
& \left(-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(2.6 \mathrm{~s})=\left(\frac{V_{2}-0 \mathrm{~m} / \mathrm{s}}{2.6 \mathrm{~s}}\right)^{2 / 6 \mathrm{~s}} \\
& -25.4 \frac{\mathrm{~m}}{\mathrm{~s}}=V_{2}
\end{aligned}
$$

\therefore after 2.6 s velocity is $25.5 \mathrm{~m} / \mathrm{s}[\downarrow]$

Forces and Free Body Diagrams

SPH4C Unit 3 - Motion and Forces

What is a Force?

- A push or a pull
- Contact or at a distance
- A vector quantity
- F

Types of Forces

" Normal - contact force exerted by a surface on an object - direction is perpendicular to and away from the surface

- Friction - contact force that acts to oppose sliding motion between surfaces
- direction is parallel to the surface and opposite the direction of sliding
- Weight - long range force due to gravitational attraction between two objects
- "force of gravity"
- direction is straight down toward the centre of the earth

Types of Forces

$$
\frac{\tau_{T}}{F_{T}}
$$

- Tension - the pull exerted by a string, rope, or cable when attached to an object and pulled taut
\vec{F}_{A}
- Applied - a push or pull caused by an outside agent
- Drag - solid interacts with fluid so as to oppose the motion of the solid through the fluid

Mass vs. Weight

- mass (kg)
- amount of matter in an object
- weight (N)
- force of gravity acting on an object
$\checkmark m \times 9.8 \mathrm{~m} / \mathrm{s}^{2}$
- on earth, $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$ [down]
- $1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$

Free Body Diagrams

- Use to analyze forces
- 5 questions:

1. Is there gravity? (Fg)
2. Is it sitting on a surface? (Fn)
3. Is something pushing or pulling on it? (FA, FT)
4. Is there friction? (Ff)
5. Is it accelerating?

Free Body Diagrams

Example \#1: A box is pushed to the left across a rough, horizontal surface. Draw the FBD.

Free Body Diagrams

Example \#2: The same box is now pulled to the right with a rope. Draw the FBD.

Net Force

- sum of all forces acting on an object
- = 0 for a stationary object

Or moving at a constant velocity
Example
Calculate the net force when the following forces act on an object:
$\xrightarrow[\sim]{\sim} \rightarrow E$
s

- 20N [N], 20N [S], 15N [E], 20N [W]

$$
\begin{aligned}
& p g 2 q \#(6,7
\end{aligned}
$$

