FRICTION

FRICTION

* a force between two surfaces that opposes motion
+ acts opposite the direction of motion static-object is stationary (trying to move)
* kinetic - object is moving
F_{f} does not depend on velocity or surface area

COEFFICIENT OF FRICTION

\times Coefficient of Friction - the ratio of the magnitude of the force of friction between 2 surfaces to the magnitude of the normal force between the surfaces

$$
\begin{array}{r}
\mu=\frac{F_{f}}{F_{N}} \\
\text { Greek letter''m" }
\end{array}
$$

NORMAL FORCE

* Equal to the weight of the object
* $\mathrm{F}_{\mathrm{N}}=\mathrm{mg}$

FRICTION

$$
F_{f}=\mu F_{N} \quad \begin{aligned}
& F_{f}=\text { force of friction }(N) \\
& \mu=\text { coefficient of friction } \\
& F_{N}=\text { normal force }(N)
\end{aligned}
$$

COEFFICIENT OF STATIC FRICTION

x static - stationary (not moving)

* Coefficient of Static Friction:
+ the ratio of the magnitude of the maximum force of static friction to the magnitude of the normal force

$$
\mu_{s}=\frac{F_{s}}{F_{N}}
$$

COEFFICIENT OF KINETIC FRICTION

* kinetic - moving
* Coefficient of Kinetic Friction:
+ the ratio of the magnitude of the force of kinetic friction to the magnitude of the normal force

$$
\mu_{k}=\frac{F_{k}}{F_{N}}
$$

WHERE DO YOU WANT

 FRICTION...* as low as possible?

as high as possible?

EXAMPLE \#1 - PG. 53

* In the horizontal starting area for a bobsled race, 4 athletes, with a combined mass of 295 kg , need a horizontal force of 41 N [forward] to get the 315 kg sled moving.
Calculate the coefficient of static friction. $m=315 \mathrm{~kg}$

$$
\begin{aligned}
& F_{N}=F_{g}=m g \\
&=(315 \mathrm{~kg})\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \\
& F_{N}=3087 \mathrm{~N} \\
& F_{S}=41 \mathrm{~N} \\
& M_{S}=\frac{F_{S}}{F_{N}}=\frac{41 \mathrm{~N}}{3087 \mathrm{~N}}=0.013
\end{aligned}
$$

EXAMPLE \#2-PG. 54

* A truck's brakes are applied so hard that the truck goes into a skid on a dry asphalt road. The truck and its contents have a mass of $4.2 \times 10^{3} \mathrm{~kg}$, calculate the force of kinetic friction on the truck.

2 sig digs

Table an pg. $53 U_{k}=1.0$

$$
\begin{aligned}
F_{N} & =m g \\
& =\left(4.2 \times 10^{3} \mathrm{~kg}\right)\left(\frac{9.8 \mathrm{~m}}{\mathrm{~s}^{2}}\right) \\
& =(4200 \mathrm{~kg})\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \\
F_{N} & =41160 \mathrm{~N} \\
F_{k} & =M_{k} F_{N} \\
& =1.0 \times 41160 \mathrm{~N} \\
F_{k} & =41160 \mathrm{~N} \\
F_{k} & =41000 \mathrm{~N} \\
F_{k} & =2 \mathrm{sig} \text { digs. }
\end{aligned}
$$

EXAMPLE \#3

A loaded 4-man bobsled with a mass of 615 kg /experiences a frictional force of 66 N as it slides down the track. Calculate the coefficient of friction.

$$
F_{k}=66 \mathrm{~N}
$$

$$
\begin{aligned}
& F_{k} \quad F_{N}=F_{g} \\
& F_{N}=m g \\
&=\left(615 k_{2}\right)\left(9, \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \\
& M_{k}=\frac{F_{k}}{F_{N}} \quad F_{N}=6027 \mathrm{~N} \\
&=\frac{66 \mathrm{~N}}{6027 \mathrm{~N}}=0.011
\end{aligned}
$$

HOMEWORK

Read pgs. 52-55

* Do
+ p. 54 \# 3-5
+p.55 \# 1-4

