Unit\#3: Motion

Test Review

Scalars and Vectors
Scalar - magnitude only on. $\quad 5 \mathrm{~m} / \mathrm{s}$
Vector - magnitude and direction ex. $5 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$

Distance, Position, Displacement
distance (d) - how far an object
travelled travelled
Position (\vec{d}) - where an object is relative to a reference point

$$
\text { displacement }(\overrightarrow{\Delta d})-\frac{\text { change in position }}{d_{2}-d_{1}}
$$

Motion Graphs
Position r Time

Uniform Acceleration
\checkmark acceleration is constant
$\vec{a}=\frac{\Delta \vec{V}}{\Delta t}=\frac{\vec{V}_{2}-\vec{V}_{1}}{\Delta t}$

Mass vs. Weight
Mass - amount of matter in an object $k g$
Weight - the Farce of gravity on an $=$ mass $(\mathrm{ks}) \times 9.8 \mathrm{~m} / \mathrm{s}^{2}$

Newton's Laws of Motion

Inertia

- a property of matter that causes an object to resist changes in its state of motion
- it is directly proportional to the mass of the object large mass $=$ lots of inertia small mass = little amount of inertia

Newton's First Law of Motion: The Law of Inertia

- If the net force acting on an object is zero, the object will maintain its state of rest or constant velocity.
- objects at rest remain at rest unless acted upon by a net force
- objects in motion remain in motion unless acted upon by a net force
- if the velocity of an object is constant (or zero), the net external force acting on it is zero
- if the velocity of an object is changing either in magnitude, direction, or both, the change must be caused by a net external force acting on the object

Net Forces

- Net Force:
- the vector sum of all the forces acting on an object
- also called the resultant force
- symbol $\mathrm{F}_{\text {Net }}$

What is a Newton?

- Newton:
" the magnitude of the net force needed to give a $1-\mathrm{kg}$ object an acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$
- $1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{x} \mathrm{m} / \mathrm{s}^{2}$

Newton's Second Law of Motion

- If the external net force on an object is not zero, the object accelerates in the direction of the net force. The magnitude of the acceleration is directly proportional to the net force and inversely proportional to the object's mass.

$$
\vec{a}=\frac{\vec{F}_{N e t}}{m}
$$

$$
\vec{F}_{N e t}=m \vec{a}
$$

Pg. 42 \#2 b

$$
1 W=\backslash \log \frac{m}{s^{2}}
$$

- Calculate the acceleration when a bowler exerts a net force of 18 N [forward] on a 7.5 kg bowling ball
Given

$$
\begin{aligned}
& \left.\begin{array}{l}
F_{\text {Net }}=18 \mathrm{~N} \text { [Fowad] } \\
m=7.5 \mathrm{~kg}
\end{array} \quad=18 \mathrm{~kg}\left(\frac{\mathrm{~m}}{\mathrm{~s} 2}\right)^{2}\right][\mathrm{F}] \\
& \vec{a}=\text { acceleration } \\
& \vec{a}=2.4 \mathrm{~m} / \mathrm{s}(F]
\end{aligned}
$$

Pg. 42 \#3b

$$
28 g \div 1000
$$

$$
=0.028 \mathrm{~kg}
$$

- Calculate the net force given that a $28-\mathrm{g}$ arrow has an acceleration of $2.4 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}$
Given:
Unknown F F

$$
\begin{aligned}
& \vec{a}=2.4 \times 10^{3} \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \frac{\text { Steps }}{F_{\text {met }}}=\mathrm{ma} \\
& m=0.028 \mathrm{~kg} \\
& =(0.028 \mathrm{~kg})(2400 \mathrm{~m}) \\
& =67.2\left(\frac{\left.\mathrm{~kg} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)}{}\right. \\
& =67 \mathrm{~N}
\end{aligned}
$$

Pg. 45 \#3

- Calculate the net force needed to cause a 1310 kg sports car to accelerate from 0 to $28.6 \mathrm{~m} / \mathrm{s}$ [forward] in 5.60 s .
Given

$$
\begin{array}{ll}
m=1310 \mathrm{~kg} & \vec{a}=\frac{28.6 \mathrm{~m} / \mathrm{s}-0}{5.60 \mathrm{~s}} \\
\Delta t=5.60 \mathrm{~s} & \vec{a}=\frac{28.6 \frac{\mathrm{~m}}{\mathrm{~s}}[\text { Forward] }]}{5.60 \mathrm{~s}}
\end{array}
$$

Unknown $F_{\text {net }}$
Steps:

$$
\begin{aligned}
& F_{N e t}=M R \\
& a=\frac{v_{2}-v_{1}}{\Delta t}
\end{aligned}
$$

$$
\begin{aligned}
\vec{a} & =5 \cdot\left(\frac{1 \mathrm{~m}}{s^{2}}\left[F_{\text {orwad }}\right]\right. \\
F_{\text {FLT }} & \left.=(1310 \mathrm{~kg})\left(5_{1} 1 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \vec{F}\right] \\
& =66900 \mathrm{~N}\left[F_{\text {forward }}\right]
\end{aligned}
$$

Newton's Third Law of Motion

- For every force, there is a reaction force equal in magnitude but opposite in direction
- When applying Newton's Third law, the action and reaction forces will appear on separate FBDs. Since they appear on separate FBDs, they are not added together.

Friction - force that apposes
motion or attempted motion.

$$
\begin{aligned}
& \text { Static - not moving } M_{s}=\frac{F_{s}}{F_{N}} \\
& \\
& F_{s}=u_{s} F_{N} \\
& \text { Kinetic - Moving } \quad u_{k}=\frac{F_{k}}{F_{N}} \\
& F_{k}=M_{k} F_{N}
\end{aligned}
$$

Class / Home Work
Pg 65 \# $1-12$ (Tuesday)
Pg 65
\# 14

$$
\operatorname{Pg} 66-67 \# 1,5-7,10-13,17
$$

