Calculations Involving Potential \& Kinetic Energy

© 2007-2010 The University of Waikato I www.sciencelearn.org.nz

Gravitational Potential Energy

- Is the energy possessed by an object due to its height relative to some other surface.
- It is directly proportional to its mass, its height, and gravitational field
 st $E_{g}=m g h \quad$ where $m=$ mass (kg)

$$
\begin{aligned}
& g=\text { gravitational field strength }(9.8 \mathrm{~N} / \mathrm{kg}) \\
& h=\text { height }(\mathrm{m})
\end{aligned}
$$

Example 1

- A 3.0 kg cat is perched on a 2.0 m high shelf. What is the cat's gravitational potential energy?

$$
\begin{aligned}
& E_{g}=m g h \\
&=\left(3.0 \mathrm{~kg}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(2.0 \mathrm{~m})\right. \\
& E_{g}=58.8 \mathrm{~J} \\
& E g=59 \mathrm{~J}
\end{aligned}
$$

Example 2

- A diver on a diving board at a height of 5.0 m dives into the water experiencing a loss in gravitational potential energy of 2655 J . What is the diver's mass?

$$
\begin{aligned}
G_{i v e n} & E_{F}
\end{aligned}=2655 \mathrm{~J}, \text { m }
$$

Unknown $m=m a s s$
Steps

$$
\left.\begin{array}{l}
E_{g}=m g h \\
2655 \mathrm{~J}=m(9.8 \mathrm{~m} \\
2655 \mathrm{~J}=\left(49 \mathrm{~m}^{2} \mathrm{~s}^{2}\right)^{\frac{s^{2}}{m}}
\end{array}\right), \begin{aligned}
& m=2655 \mathrm{~kg}) \frac{\mathrm{m}^{2}}{49 \mathrm{~m}^{2}} \\
& m=54 \mathrm{~kg}
\end{aligned}
$$

Kinetic Energy

- Is the energy possessed by an object in motion
- The amount of kinetic energy possessed by an object proportional to
 its mass and to the square of its speed

$$
\begin{aligned}
E_{k}=\frac{1}{2} m v^{2} \quad \text { where } m & =\operatorname{mass}(\mathrm{kg}) \\
v & =\operatorname{speed}(\mathrm{m} / \mathrm{s})
\end{aligned}
$$

Example 3

- A 2500.0 kg car is travelling at $80.0 \mathrm{~km} / \mathrm{h}(22.222$ m / s). What is its kinetic energy?

Given

$$
\begin{aligned}
& m=2500 \mathrm{~kg} \\
& V=22.2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
E_{k}=\frac{1}{2} m v^{2}
$$

Unknown

$$
E_{k}=\text { Kinetic energy }
$$

$$
E_{k}=\frac{m v^{2}}{2}
$$

Steps

$$
\begin{aligned}
E_{k} & =\frac{m v^{2}}{2} \\
& =\frac{\left(2500 k_{g}\right)(22 m / s)^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& E_{k}=\frac{(2500 \mathrm{~kg})\left(493 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}\right)}{2} \\
& E_{k}=616,050\left(\mathrm{~kg} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}\right. \\
& E_{k}=616000 \mathrm{~J}
\end{aligned}
$$

Example 4

- A runner of mass 59 kg possesses a kinetic energy of 1.3 kJ . What is her speed?
Given

$$
\begin{aligned}
E_{k} & =1.3 \mathrm{~kJ} \\
& =1.3 \times 1000 \mathrm{~J} \\
& =1300 \mathrm{~J}=1300 \mathrm{~kg} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \\
m & =59 \mathrm{~kg}
\end{aligned}
$$

Unknown

$$
V=\text { speed }
$$

Steps:

$$
\begin{gathered}
E_{k}=\frac{m \nu^{2}}{2} \\
1300 \mathrm{tg}_{\frac{m^{2}}{s^{2}}}=\frac{59 \mathrm{kq} v^{2}}{2}
\end{gathered}
$$

$$
\begin{gathered}
1300 \mathrm{~kg}^{2} \frac{\mathrm{~s}^{2}}{1300 \mathrm{~kg} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}}=29.5 \mathrm{~kg} \mathrm{v}^{2} \\
\frac{29.5 \mathrm{~kg}}{44}=v^{2} \\
\frac{44 \mathrm{~m}^{2}}{\mathrm{~s}^{2}}=v^{2} \\
v=\sqrt{44 \mathrm{~m} / \mathrm{s}^{2}} \\
v=6.6 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

EXAMPLE \#5

- A 65 kg diver performs a handstand dive from a 10.0 m high platform. Determine his speed 3.0 m below the platform and his speed when he hits the water.

$$
\left.\begin{array}{l}
\text { At top all } E g \\
\begin{array}{rl}
E g & =m g h \\
& =(65 \mathrm{~kg})\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(10 \mathrm{~m})
\end{array} \\
E_{g}=6370 \mathrm{~J} \\
E_{k}=0 \mathrm{~J}
\end{array}\right]
$$

3 m below platform

$$
\left.\begin{array}{c}
10-3=7 \quad h=7 \mathrm{~m} \\
E_{q}=(65 \mathrm{~kg})(9.8 \mathrm{~m} \\
\mathrm{s}^{2}
\end{array}\right)(7 \mathrm{~m}) \mathrm{f}=459 \mathrm{~J} .
$$

When he hits water

$$
\begin{aligned}
h & =0 \\
\therefore E_{g} & =0 \\
\text { so } E_{k} & =6370 \mathrm{~J} \\
E_{k} & =\frac{m v^{2}}{2} \\
6370 & =\frac{65 v^{2}}{2} \\
6370 & =32.5 \mathrm{v}^{2} \\
v^{2} & =\frac{6370}{32.5} \\
v^{2} & =196 \mathrm{~m}^{2} / \mathrm{s}^{2} \\
v & =14 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

