Torque

## What is Torque?

- A torque is the turning force exerted on a rigid object causing it to turn about its fulcrum.



## Effort of Force/Distance on Torque

- The further the effort force from the fulcrum, the greater the rotational effect.
- The greater the force on the lever, the greater the effect on rotation.



## Torque Formula

$$
\tau=F d
$$

- Where:
- $\tau=$ torque $(\mathrm{N} \bullet \mathrm{m})$
- $F=$ force ( N )
- $d=$ distance $(m)$ [The distance is always measured from the force considered to the fulcrum (or pivot).]

Example 1

- If you push on a door at a distance of 0.60 m from the hinges, with a force of 150 N , what is the magnitude of the torque produced?
Given

$$
\begin{aligned}
& F=150 \mathrm{~N} \\
& G=0.60 \mathrm{~m}
\end{aligned}
$$

unknown

$$
\frac{\tau}{\tau}=\text { torque }
$$

Example 2


While shovelling snow using a 1.6 m long shovel, you place your hand at the mid point to create the fulcrum and produce a torque of $250 \mathrm{~N} \cdot \mathrm{~m}$. What is the magnitude of the force that you apply?
Given
Unknown

$$
\begin{array}{r}
d=1.6 \mathrm{~m} \quad \frac{\text { Steps }}{\tau}=250 \mathrm{~N} \cdot \mathrm{~m} \quad \frac{\tau}{d} \\
F=\text { force } \quad F=\frac{250 \mathrm{~N} \cdot \mathrm{~m}}{1.6 \mathrm{~m}} \\
F=\frac{156 \mathrm{~N}}{F}
\end{array}
$$

## LAW OF THE LEVER

- When a lever is in equilibrium, the effort torque is equal to the load torque.
- (When a lever is in equilibrium, it is at rest, e.g., it is not rotating. For a lever to be at rest, the effort torque must be equal to the load torque.)



## EXAMPLE

- A wheelbarrow is loaded with 140 kg of bricks. The distance between the load and fulcrum is 0.50 m . If the distance between the effort and the fulcrum is 1.5 m , what is the effort required to lift the load?

$$
V F_{L}=(140 \mathrm{~kg})\left(9 \frac{8 \cdot}{\mathrm{~g}_{\boldsymbol{z}}^{2}}\right)
$$



$$
\begin{aligned}
& F_{L} d_{L}=F_{E} d E \\
& \frac{F_{L} d_{L}}{d_{E}}=F_{E} \\
& \frac{(137 \sqrt{(1)})(0,5 \mathrm{me})}{1.5 \mathrm{~m}}=F_{E} \\
& 457 \mathrm{~N}
\end{aligned}=F_{E} .
$$

HO

$$
\text { pg } 84 \text { \#lo }
$$

pg $86 \# 12,13,14$

