RESISTANCE AND CIRCUIT ANALYSIS

EQUIVALENT RESISTANCE IN MIXED CIRCUITS

Practice

 What is the total resistance of the mixed circuits shown in Figure 6? Note that each resistor has resistance 5.0 Ω. [ans: (a) 17.5 Ω; (b) 6.3 Ω]

$$R_{T} = R_{1} + Req + R_{4} + R_{5}$$

$$= 5\Omega + 5\Omega + 5\Omega + 5\Omega$$

$$R_{T} = 6.25\Omega$$

$$R_{T} = 17.5\Omega$$

CIRCUIT ANALYSIS

- To analyse a circuit means to find all the unknown values of voltage, current, and resistance.
- Use a combination of equivalent resistance,
 Kirchoff's laws, and Ohm's Law.

CIRCUIT ANALYSIS EXAMPLE

1. For each of the circuit diagrams below, the source has a voltage of 6.0 V. Each resistor has resistance 12.0 Ω . Find all the other values of current, voltage, and resistance.

	\	土	R
l	4	1/3A	12-7
2	7	1/6A	122
N	2	1/6A	15-2
T	6.01	Y3A =0.38A	18-2

$$R_{T} = R_{1} + Req = \frac{T_{T}}{R_{1}}$$

$$= \frac{12x + 12/2}{8x} = \frac{12x + 12/2}{8x}$$

Work

- Read 7.4 and 7.6
- o Pg. 337 # 1,2
- o Pg. 339 # 4,6 ____\esterday
- o Pg. 340 #7 resterda)
- o Pg. 342 #9