SPH3U - Motion in 2 Dimensions

SCALE DIAGRAM AND ALGEBRAIC APPROACHES

TWO DIMENSIONAL MOTION

* Objects can move in two dimensions, such as in a horizontal plane and a vertical plane
* A compass rose can be used to express directions in a horizontal plane, such as [E30N] - wow !! That's Gr. 9 Geography!
To determine total displacement in 2 dimensions, displacement vectors can be added together using a scale diagram

COMPASS ROSE

CONVENTION FOR DESCRIBING VECTOR DIRECTIONS

RESULTANT VECTOR

* Resultant Vector:
+ A vector that results from adding two or more given vectors
+ Add vectors from the tail of the first vector to the tip of the final vector

ADDING VECTORS A GRAPHICAL APPROACH

* Choose a suitable scale to represent the vectors (ex. 1 cm to 100 m)
* Use a protractor to measure angles
- Copy or Print fronnebsite
- Watch 2 ri 3 videos on vectors that will be on website.

EXAMPLE \#1

* Brian walks $1.0 \mathrm{~m}[\mathrm{~N}]$ and $2.0 \mathrm{~m}[\mathrm{E}]$. Determine the resulting displacement.

EXAMPLE \#2

* A car drives 300.0 km [E] and 400.0 km [NE]. Determine the displacement of the car.

ADDING VECTORS AN ALGEBRAIC APPROACH

× Perpendicular vectors can be added algebraically using the Pythagorean theorem and the tangent function

* By using the component method of vector addition, all vector addition problems can be converted into a problem involving two perpendicular vectors

COMPONENT VECTOR

* The x-vector or the y-vector that can be broken down into an overall vector

ADDING TWO PERPENDICULAR VECTORS USING

 ALGEBRA* A jogger runs 400.0 m [W], turns and continues for an additional 900.0 m [S]. Determine the joggers total displacement.

BREAKING DOWN VECTORS INTO TWO PERPENDICULAR COMPONENTS

* Break the displacement vector 50.0 m [E40$\left.{ }^{\circ} \mathrm{N}\right]$ into 2 perpendicular component vectors.

WORK FOR THE DAY

\times Pg. 65 \#1,2,4,5

* Pg. 67 \#1,2
* Pg. 69 \#1,2

