VIBRATIONS AND WAVES

VIBRATION

• Vibration:

• The cyclical motion of an object about an equilibrium point

• Mechanical Wave:

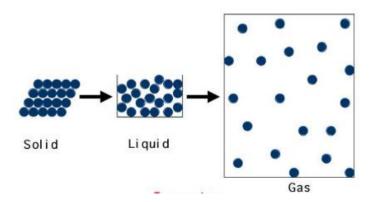
 The transfer of energy through a material due to vibration

• Medium:

• The material that permits the transmission of energy through vibrations

• Net Motion:

• The displacement of a particle over a certain time interval; the difference between the particle's initial and final positions


PARTICLE BEHAVIOUR

• Elastic

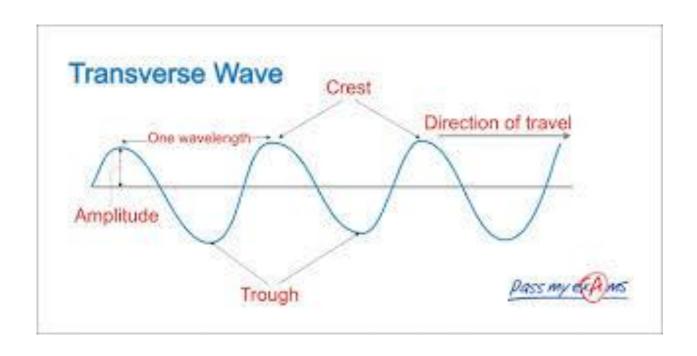
 the property of a medium that returns to its original shape after being disturbed

• Translational molecular motion

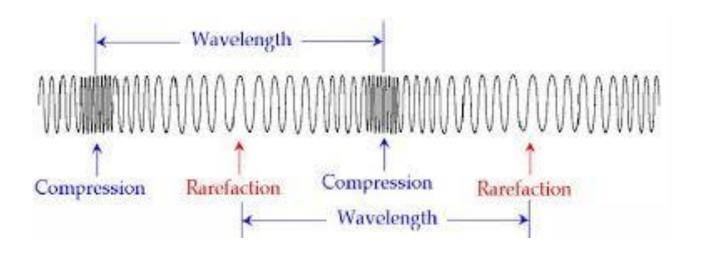
• the straight-line motion of a molecule; this motion is typical of gases because the particles in liquids and solids are not free to move in this manner

Types of mechanical waves

 Waves are classified according to the direction of particle motion compared to the direction of the wave motion


Transverse Waves

• a wave in which particles vibrate perpendicular to the direction of the flow of energy


Longitudinal Waves

• a wave in which particles vibrate parallel to the direction of the flow of energy

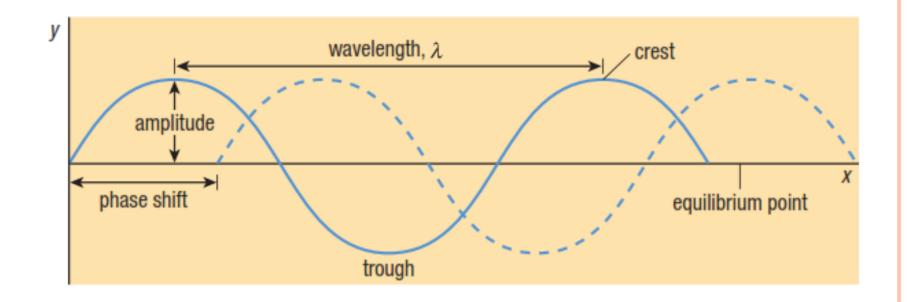
TRANSVERSE WAVE

LONGITUDINAL WAVE

COMPRESSIONS AND RAREFACTIONS

Compression

• The region in a longitudinal wave in which the medium's particles are closer together


Rarefaction

• The region in a longitudinal wave in which the medium's particles are farther apart

Sound

• a form of energy produced by rapidly vibrating objects detectable by sensory organs such as the ear

WAVE CHARACTERISTICS

GEOMETRIC WAVE CHARACTERISTICS

- Amplitude
 - the maximum displacement of a wave from its equilibrium point
- Waveform
 - the shape of a wave when graphed
- Crest
 - the maximum point of a transverse wave
- Trough
 - the minimum point of a transverse wave
- \circ Wavelength λ
 - the distance between 2 similar points in successive identical cycles in a wave, such as from crest to crest or trough to trough

GEOMETRIC WAVE CHARACTERISTICS

Phase

• in a continuous transverse or longitudinal wave, the x coordinate of a unique point of the wave

• Phase shift

 a shift of an entire wave along the x-axis with respect to an otherwise identical wave

In phase

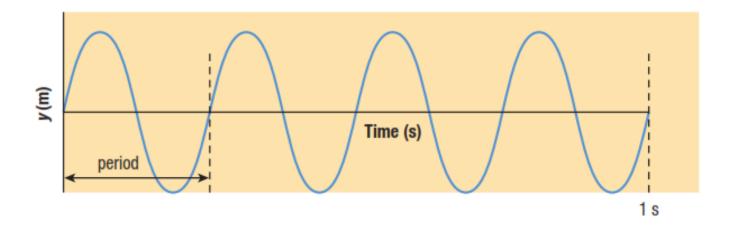
 the state of two identical waves that have the same phase shift

Out of phase

 the state of two identical waves that have different phase shifts

TIME-BASED WAVE CHARACTERISTICS

- frequency (f)
 - the number of complete cycles that occur in unit time, usually 1 s
 - measured in hertz (Hz)
 - frequency = # of cycles / unit of time


$$f = \frac{1}{T}$$

TIME BASED WAVE CHARACTERISTICS

- o period (T)
 - the time for a vibrating particle to complete one cycle
 - period = time / unit cycle

$$T = \frac{1}{f}$$

TIME-BASED WAVE CHARACTERISTICS

WAVE SPEED

- Wave speed (v)
 - the rate at which a wave is travelling through a medium; also a measure of how fast the energy in the wave is moving
 - wave speed = length of one cycle / time for one cycle

$$v = \frac{\lambda(m)}{T(s)}$$